有理数的除法
【教学目标】
1.知识与技能:掌握有理数除法则,会进行有理数的除法运算及分数的化简。
2.过程与方法:通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法算。
3.情感与价值观:培养学生勇于探索积极思考的良好学习习惯。
【教学方法】
前面已学过有理数加法、减法、乘法,这些运算为学习有理数除法作了辅垫,而除法在小学时已经接触到过,学生也知道除法是乘法的逆运算,本课的重点是有理数的除法法则,通过小组讨论、小组合作,不仅能突破重点,也能培养学生观察问题,分析问题和解决问题的能力,由于有理数除法是一种运算,在上课时,既要减少一些繁难的例题,又要通过一定的练习让学生能熟练地运用法则,进行准确计算。
【教材分析】
有理数的除法意义与以前小学学过的一样,所以教材中没有单独强调有理数除法意义。教材先给出“除以一个数等于乘这个数的倒数”这一形式的除法法则,说明乘法与除法的关系,并用a÷b=A.(b≠0)把这个关系简明地表示出来。考虑到具体运算的不同情况,教材又从除法可以化成乘法,给出与乘法类似的法则,以便于学生根据具体情况灵活选用。并以填空的形式出现,让学生讨论,合作探究,充分发挥他们的主观能动性。
【教学重难点】
1.重点:有理数的除法法则
2.难点:灵活运用有理数除法的两种法则
【教学方法】
讲解与练习相结合
【教学过程】
一、复习旧知,导入新知1.求下列各数的倒数(1)-; (2)-0.125; (3)-12.小学里除法的意义是什么?小学算术中除法怎么计算?引入负数后,又如何计算有理数的除法呢?二、探索新知1.探索有理数除法法则一【问题一】 例如8÷(-4)怎样求?根据除法意义填空:∵ -2 ×(-4)=8∴8÷(-4)= -2 ① 8×(-1/4)=-2 ② 由①、②可得到什么等式8÷(-4)= 8×(-1/4)③让学生观察上面的③式中等号的两边有哪些相同与不同的地方?相同点:被除数不变不同点:①除号变成乘号 ②除数变成它的倒数【问题]2】通过上面的探索,你能说出有理数的除法法则吗?(板书)有理数的除法法则一:除以一个不等于0的数,等于乘这个数的倒数可表示为:a÷b=A.(b≠0) 2.探索有理数除法法则二【问题3】(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?(板书)有理数的除法法则二: 两数相除同号为正,异号为负,并把绝对值相除。0除以任何一个不为0的数,都得0.三、应用新知例5.计算:(1)(-36)÷9;(2)(-)÷(-)通过上面的例题让学生思考什么情况用有理数除法法则二计算方便(当被除数能被除数整除时用法则二计算方便)。例6:化简下列分数:(1);(2) 分析:分数可以理解为除法,所以要按除法的法则进行,可以直接除也可以转化为乘法,利用乘法的运算性质简化分数。例7计算(1)(-125)÷(-5); (2)-2.5÷×(-)分析引导:第(1)题是分数除法,应转化为乘法,由于-125化为假分数,计算量大,可以把125写成125+后用分配律。第(2)题是乘除混合运算,应统一为乘法,以便约分。四、巩固练习1.计算:(1)(-18)÷6; (2)(-63)÷(-7) (3)1÷(-9) (4)0÷(-8)2.化简: (1); (2);(3)。3.计算:(1)÷9 (2)(-12)÷(-4)÷()(3)()÷()÷(-0.25)五、课堂小结由学生归纳本节课所学的内容,谈一谈本节课得到了什么启示。【板书设计】 有理数的除法一、有理数的法则1二、有理数的法则2三、例6 例7 例8 上黑板演示回忆、思考、回答 学好有理数的除法必须以学好求一个有理数的倒数为条件,所以在这里我抛砖引玉,为学生学好有理数的除法法则奠定基础。
【教学反思】
本节课通过有理数除法法则的探索,使学生从不同的思维角度掌握理解法则,学生从中深刻地领会到探索过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性,通过命题讲解及课堂练习,使学生既巩固了知识,又形成了技能,在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索不断创新的思维品质。