第1章 勾股定理(共5课时)教案

文档属性

名称 第1章 勾股定理(共5课时)教案
格式 zip
文件大小 1.1MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2012-09-16 20:37:02

文档简介

名 称 八年级上册 数学 教案 总第3课时
主备人 审核者 上课时间
课 题 1.1探索勾股定理(三) 课型 新授课
学习目标 1.通过对几种常见的勾股定理验证方法的分析和欣赏,理解数学知识之间的内在联系;经历综合运用已有知识解决问题的过程,加深对勾股定理、整式运算、面积等的认识。2.经历不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值;通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间的内在联系。3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题的方法与经验。
重点 通过综合运用已有知识解决问题的过程,加深对勾股定理、整式运算、面积等的认识。通过拼图验证勾股定理的过程,使学习获得一些研究问题与合作交流的方法与经验。
难点 利用数形结合的方法验证勾股定理。
学法指导 本课题是学生初步认识了“勾股定理”后,对勾股定理探究的加深与提高,具有一定的挑战性。课本上设计了丰富的拼图活动,让学生经过自己的操作和思考,既经历验证勾股定理的过程,获得相应的数学活动经验,又能了解中外多种方法,开阔视野,感受古代人民的聪明才智。
课前准备 剪刀、双面胶、硬纸板、铅笔、多媒体课件。
教学过程 师生活动 二次备课
情境示标 三国时期吴国数学家赵爽在为《周髀算经》作注解时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明. ( http: / / www.ihep.ac.cn / kejiyuandi / news / 10-faxian / zhoubisuanjing.jpg )2002年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就. 勾股定理是几何学中的明珠,充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。同时勾股定理是世界上证法最多的定理。
自主探究 美国第二十任总统伽菲尔德的证法,被称为“总统证法”. 如图,梯形由三个直角三角形组合而成,利用面积公式,列出代数关系式,得化简,得 使学生在上这节课时就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣。
合作展示 据传是当年毕达哥拉斯发现勾股定理时做出的证明。 将4个全等的直角三角形拼成边长为(a+b)的正方形ABCD,使中间留下边长c的一个正方形洞.画出正方形ABCD.移动三角形至图2所示的位置中,于是留下了边长分别为a与b的两个正方形洞.则图1和图2中的白色部分面积必定相等,所以c2=a2+b2 希望学生能从这些证明方法中学习到一些重要的数学方法、数学思想。鼓励同学们作为新时期的学习者,也能探索出自己的证明方法,激发学习数学的兴趣。
点拨释疑 以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明,反映了勾股定理的几何意义。如图,过 A 点画一直线 AL 使其垂直于 DE, 并交 DE 于 L,交 BC 于 M。通过证明△BCF≌△BDA,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与 矩形MLEC也等积,于是推得。 适当的归类整理有助于学生提高对有关验证方法的认识,加深学生的理解。
训练提升 意大利文艺复兴时代的著名画家达·芬奇对勾股定理进行了研究。 勾股定理是世界上证法最多的定理,在这数百种证明方法中,有的十分精彩,有的十分简洁,希望学生能从这些证明方法中学习到一些重要的数学方法、数学思想。
检测反馈 议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c22.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。 在前面已经讨论了直角三角形三边满足的关系,那么锐角三角形或钝角三角形的三边是否也满足这一关系呢?
板书设计 1.1探索勾股定理(三)拼图证明: 推导过程: 练习:(略) (略) (略)
教学反思 但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。因此,在今后的教学中还需要进一步关注学生的实验操作活动,提高其实践能力。
a
a
b
b
c
c
a
b
c
A
B
C
D
E
F
O
_
b
_
a
_
a
_
c
_
b
_
c名 称 八年级上册 数学 教案 总第5课时
主备人 审核者 授课时间
课 题 1.3蚂蚁怎么走最近 课型 新授课
教学目标 1、学会观察图形,勇于探索图形间的关系,培养学生的空间观念.经历一般规律的探索过程,发展学生的抽象思维能力.2、在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.3、通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性.
重点 探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.
难点 利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.
学法指导 本节从生动有趣的问题情景出发,通过学生自主探究,运用勾股定理及其逆定理解决简单的实际问题,既巩固了基本知识点,又在将实际问题抽象成几何图形过程中,学会观察,提高分析能力,渗透数学建摸思想.
课前准备 多媒体课件,用矩形纸片做成的圆柱、剪刀等。
教学过程 师生活动 设计意图
情境示标 如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?情景的创设引入新课,激发学生探究热情. 从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.
自主探究 如图,在棱长为10厘米的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1厘米/秒,且速度保持不变,问蚂蚁能否在20秒内从A爬到B? 学生能画出棱柱的侧面展开图,确定出AB位置,并正确计算.如有可能,还可把正方体换成长方体进行讨论
合作展示 学生小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.学生汇总了四种方案:(1)   (2)    (3)    (4)学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.如图:(1)中A→B的路线长为:AA’+d;(2)中A→B的路线长为:AA’+A’B>AB;(3)中A→B的路线长为:AO+OB>AB;(4)中A→B的路线长为:AB.得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12cm,底面半径为3cm,π取3,则. 通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.
点拨释疑 李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?解答:(2)∴AD和AB垂直运用勾股定理逆定理来解决实际问题,让学生学会分析问题,利用允许的工具灵活处理问题. 先鼓励学生自己寻找办法,再让学生说明李叔叔的办法的合理性.当刻度尺较短时,学生可能会在上面解决问题的基础上,想出多种办法,如利用分段相加的方法量出AB,AD和BD的长度,或在AB,AD边上各量一段较小长度,再去量以它们为边的三角形的第三边,从而得到结论.
训练提升 如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离. 解答: 3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?解答:设伸入油桶中的长度为x米, 则最长时:∴最长是2.5+0.5=3(米)最短时:∴最短是1.5+0.5=2(米)答:这根铁棒的长应在2-3米之间 对本节知识进行巩固练习,训练学生根据实际情形画出示意图并计算.
检测反馈 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?解答:设水池的水深AC为x尺,则这根芦苇长为AD=AB=(x+1)尺,在直角三角形ABC中,BC=5尺由勾股定理得:BC2+AC2=AB2即 52+ x2= (x+1)225+ x2= x2+2 x+1,2 x=24,∴ x=12, x+1=13答:水池的水深12尺,这根芦苇长13尺。学生能画出示意图,找等量关系,设适当的未知数建立方程. 学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;运用方程的思想并利用勾股定理建立方程
板书设计 1.3 蚂蚁怎样走最近情境引入———— 小试牛刀:     举一反三—————合作探究————  1.——————     1. —————— 2.——————     2.——————           3.——————     课后作业:
教学反思 “蚂蚁怎么走最近”是一个生动有趣的问题,让学生充满了探究的欲望,这个问题体现了二、三维图形的转化,对发展学生的空间观念很有好处.在教学过程中教师应通过情景创设,激发兴趣,鼓励引导学生经历探索过程,得出结论,从而发展学生的数学应用能力,提高学生解决实际问题的能力.
B
A
B
B
A
A’
A’
A’名 称 八年级上册 数学 教案 总第4课时
主备人 审核者 上课时间
课 题 1.2能得到直角三角形吗 课型 新授课
学习目标 1.理解勾股定理逆定理的具体内容及勾股数的概念;能根据所给三角形三边的条件判断三角形是否是直角三角形。2.经历一般规律的探索过程,发展学生的抽象思维能力;经历从实验到验证的过程,发展学生的数学归纳能力。3.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;在探索过程中体验成功的喜悦,树立学习的自信心。
重点 理解勾股定理逆定理的具体内容。
难点 能根据所给三角形三边的条件判断三角形是否是直角三角形。
学法指导 (1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)利用探索,研究手段,通过思维深入,领悟教学过程。
课前准备 多媒体课件、作图工具。
教学过程 师生活动 二次备课
情境示标 1.直角三角形中,三边长度之间满足什么样的关系?2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?通过情境的创设引入新课,激发学生探究热情。 从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。
自主探究 下面有三组数,分别是一个三角形的三边长,①5,12,13; ②7,24,25; ③8,15,17;并回答这样两个问题:1.这三组数都满足吗?2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。经过学生充分讨论后,汇总各小组实验结果发现:5,12,13满足,可以构成直角三角形;②7,24,25满足,可以构成直角三角形;③8,15,17满足,可以构成直角三角形。从上面的分组实验很容易得出如下结论:如果一个三角形的三边长,满足,那么这个三角形是直角三角形 通过学生的合作探究,得出“若一个三角形的三边长,满足,则这个三角形是直角三角形”这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律。
合作展示 有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:如果一个三角形的三边长,满足,那么这个三角形是直角三角形满足的三个正整数,称为勾股数。为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。
点拨释疑 1.同学们还能找出哪些勾股数呢?2.今天的结论与前面学习勾股定理有哪些异同呢?3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢 4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?进一步让学生认识该定理与勾股定理之间的关系
训练提升 下列哪几组数据能作为直角三角形的三边长?请说明理由。①9,12,15; ②15,36,39; ③12,35,36; ④12,18,222.一个三角形的三边长分别是,则这个三角形的面积是( )A 250 B 150 C 200 D 不能确定3.如图1:在中,于,,则是( )A 等腰三角形 B锐角三角形 C 直角三角形 D钝角三角形4.将直角三角形的三边扩大相同的倍数后,          (图1)得到的三角形是( )A 直角三角形 B 锐角三角形 C 钝角三角形 D 不能确定 加强对勾股定理及勾股定理逆定理认识及应用
检测反馈 一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90°,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?解答:由题意画出相应的图形AB=240海里,BC=70海里,,AC=250海里;在△ABC中 =(250+240)(250-240) =4900==即∴△ABC是Rt△答:船转弯后,是沿正西方向航行的。 利用勾股定理逆定理解决实际问题,进一步巩固该定理。
板书设计 1.2能得到直角三角形吗 例1: 随堂练习:勾股数 解 (略)
教学反思 对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。
A
B
C
北名 称 八年级上册 数学 教案 总第2课时
主备人 审核者 上课时间
课 题 1.1探索勾股定理(二) 课型 新授课
学习目标 1、掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2、在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3、在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.
重点 用面积法验证勾股定理,应用勾股定理解决简单的实际问题.
难点 验证勾股定理.
学法指导 引导——探究——应用
课前准备 课件、四个全等直角三角形纸片和若干个正方形纸片
教学过程 师生活动 二次备课
情境示标 教师提出问题:(1)勾股定理的内容是什么?(请几名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣. 通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.
自主探究 活动1:教师导入,学生拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后展示.)
合作展示 学生通过自主探究,小组讨论得到两个图形: 在此基础上教师提问:(1)左图你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×ab+c2.并得到)从而利用左图验证了勾股定理.我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用右图验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二) 学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.
点拨释疑 例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值. 学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.
训练提升 一组生活中勾股定理的应用练习,共3道题(1)教材 P10练习题.(2)一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?(3)受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高? 说明:这一环节设计了3道题,设计时注意了题目的梯度,由浅入深,第一题为书上练习题,学生容易解决,第二道题虽然计算难度不大,但考查学生的实际应用能力,第三道题是应用勾股定理建立方程求解,有一定难度. 在例题的基础上进行拓展,训练学生将实际问题转化为数学问题,再运用勾股定理解决问题.
检测反馈 1.若△ABC中,∠C=90°,(1)若a=5,b=12,则c= ;(2)若a=6,c=10,则b= ;(3)若a∶b=3∶4,c=10,则a= ,b= .2.某农舍的大门是一个木制的矩形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木棒加固,木板的长为 .3.直角三角形两直角边长分别为5cm,12cm,则斜边上的高为 。
板书设计 1.1探索勾股定理(二)拼图验证: 例1: 练习: (略) (略) (略)
教学反思 在课堂教学中,始终注意了调动学生的积极性.兴趣是最好的老师,所以无论是引入、拼图,还是历史回顾,我都注意去调动学生,让学生满怀激情地投入到活动中.因此,课堂效率较高.勾股定理作为“千古第一定理”,其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力.
22名 称 八年级上册 数学 教案 总第1课时
主备人 审核者 授课时间
课 题 1.1探索勾股定理(一) 课型 新授课
教学目标 1、用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2、让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3、进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
重点 用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
难点 用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
学法指导 本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.
课前准备 课件、方格纸
教学过程 师生活动 设计意图
情境示标 2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题) 紧扣课题,自然引入,同时渗透爱国主义教育,激发起学生的求知欲和爱国热情。
自主探究 (1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形: 问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.
合作展示 由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)左图右图(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1        图2        图3(4)分析填表的数据,你发现了什么?学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.
点拨释疑 (1)你能用直角三角形的边长、、来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.(2)中发现的规律对这个三角形仍然成立吗?勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为,那么即直角三角形两直角边的平方和等于斜边的平方.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方称为毕达哥拉斯定理) 学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.
训练提升 1、基础巩固练习:(口答)求下列图形中未知正方形的面积或未知边的长度:2、生活中的应用:  小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗? 第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.
检测反馈 如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少?
板书设计 1.1探索勾股定理(一) 勾股定理: 问题 (内容) (内容)
教学反思 依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.