2021年苏科版数学九年级上册
3.2《中位数与众数》同步练习卷
一、选择题
1.某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )
A.32,31 B.31,32 C.31,31 D.32,35
2.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是( )
A.3,2.5 B.1,2 C.3,3 D.2,2
3.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为( )
A.7 B.5 C.4 D.3
4.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:
捐款金额(元) 5 10 20 50
人数(人) 10 13 12 15
则学生捐款金额的中位数是( )
A.13人 B.12人 C.10元 D.20元
5.天然气公司为了解某社区居民使用天然气的情况,随机对该社区10户居民进行了调查,如表是这10户居民2016年3月份用气量的调查结果:
居民户数 1 2 3 4
月用气量(立方米) 14 15 22 25
则这10户居民月用气量(单位:立方米)的中位数是( )
A.14 B.15 C.22 D.25
6.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是( )
A.253,253 B.255,253 C.253,247 D.255,247
7.如图为某班35名学生投篮成绩的条型统计图,其中上面部分数据破损导致数据不完全.已知此班学生投篮成绩的中位数是5,则根据图,无法确定下列哪一选项中的数值( )
A.4球以下的人数 B.5球以下的人数
C.6球以下的人数 D.7球以下的人数
8.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是( )
A.22个、20个 B.22个、21个 C.20个、21个 D.20个、22个
9.为了解班级学生参加体育锻炼的情况,现将九年级(1)班同学一周的体育锻炼情况绘制如图所示的统计图,那么关于该班同学一周参加体育锻炼时间的说法错误的是( )
A.中位数是8小时
B.众数是8小时
C.平均数是8.5小时
D.锻炼时间超过8小时的有20人
10.某老师在试卷分析中说:参加这次考试的41位同学中,考121分的人最多,虽然最高的同学获得了满分150分,但是十分遗憾最低的同学仍然只得了56分,其中分数居第21位的同学获得了116分.这说明本次考试分数的中位数是( )
A.21分 B.103分 C.116分 D.121分
二、填空题
11.一组数据:3,4,4,6,6,6的中位数是______.
12.如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是 ℃.
13.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,6,7,x,10,9,已知这组数据的平均数是8,则这组数据的中位数是 .
14.已知一组数据3、x、4、5、6的众数是6,则x的值是 .
15.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是 .(填“平均数”“众数”或“中位数”)
16.若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为 .
三、解答题
17.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.
a.实心球成绩的频数分布如表所示:
b.实心球成绩在7.0≤x<7.4这一组的是:
7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3
c.一分钟仰卧起坐成绩如图所示:
根据以上信息,回答下列问题:
(1)①表中m的值为 ;②一分钟仰卧起坐成绩的中位数为 ;
(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.
①请估计全年级女生实心球成绩达到优秀的人数;
②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:
其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.
18.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:
根据以上信息,回答下列问题:
(1)在这次测试中,七年级在80分以上的有 人;
(2)表中m的值为 ;
(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;
(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.
19.为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:
在对这些数据整理后,绘制了如下的统计图表:
请根据以上信息,解答下列问题:
(1)m= ,n= ,a= ,b= ;
(2)抽取的这40名学生平均每天睡眠时间的中位数落在 组(填组别);
(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.
20.在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分析,成绩如下:
(1)根据上述数据,将下列表格补充完成.
整理、描述数据:
分析数据:样本数据的平均数、中位数、满分率如表:
得出结论:
(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共 人;
(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.
参考答案
1.答案为:C.
2.答案为:D.
3.C
4.D.
5.C.
6.答案为:A
7.答案为:C.
8.答案为:C.
9.答案为:C.
10.C
11.答案为:5
12.答案为:27.
13.答案为:8.
14.答案为:6.
15.答案为:中位数;
16.答案为:b>a>c.
17.解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;
②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;
(2)①∵实心球成绩在7.0≤x<7.4这一组的是:
7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,
∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,
∴全年级女生实心球成绩达到优秀的人数是:=65,
答:全年级女生实心球成绩达到优秀的有65人;
②同意,
理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.
18.解:(1)在这次测试中,七年级在80分以上的有15+8=23人,故答案为:23;
(2)七年级50人成绩的中位数是第25、26个数据的平均数,
而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;
(3)甲学生在该年级的排名更靠前,
∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,
八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,
∴甲学生在该年级的排名更靠前.
(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).
19.解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;
∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;
(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和
第21个数据的平均数,∴落在第3组;故答案为:3;
(3)该校学生中睡眠时间符合要求的人数为800×=440(人);
答:估计该校学生中睡眠时间符合要求的人数为440人.
20.解:(1)由题意知初二年级的分数从小到大排列为69、69、79、79、89、94、95、96、97、
97、98、98、99、99、99、99、100、100、100、100,
所以初二年级成绩的中位数为97.5分,
补全表格如下:
年级 平均数 中位数 满分率
初一 90.1 93 25%
初二 92.8 97.5 20%
(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数
共300×25%+300×20%=135人,故答案为:135;
(3)初二年级掌握禁毒知识的总体水平较好,
∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一,
∴初二年级掌握禁毒知识的总体水平较好.