(共27张PPT)
25.3 用频率估计概率
学习 目标
预习 探路
1、当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
2、通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
1.一般地,在大量重复试验中,如果事件A ,
,那么这个常数P就叫做事件A的概率.
0.5
用列举法求概率的条件是什么
(1)实验的所有结果是有限个(n)
(2)各种结果的可能性相等.
当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢
创设情境
把全班同学分成10组,每组同学掷一枚硬币50次,整理同学们获得的试验数据,并记录在表中. 第一组的数据填在第一列,第一、二组的数据之和在第二列,…,10个组的数据之和填在第10列.
“正面向上”的频率
“正面向上”的频数m
500
450
400
350
300
250
200
150
100
50
抛掷次数n
n
m
创设情境
根据上表中的数据,在图中标注出对应的点.
0.5
1
50
100
150
200
300
400
450
250
350
500
“正面向上”的频率
n
m
请同学们根据试验所得数据想一想:“正面向上”的频率有什么规律?
使用帮助
创设情境
历史上,有些人曾做过成千上万次抛掷硬币的试验,他们的试验结果见表
试验者 抛掷次数(n) “正面向上”次数(m) “正面向上”频率( )
莫弗 2048 1061 0.518
布丰 4040 2048 0.5069
费勒 10000 4979 0.4979
皮尔逊 12000 6019 0.5016
皮尔逊 24000 12012 0.5005
随着抛掷次数的增加,“正面向上”的频率的变化趋势有何规律?
可以发现,在重复抛掷一枚硬币时,“正面向上”的频率在0.5的左右摆动.
创设情境
可以发现,在重复抛掷一枚硬币时,“正面向上”的频率在0.5的左右摆动. 随着抛掷次数的增加,一般地,频率就呈现出一定的稳定性:在0.5的左右摆动的幅度会越来越小. 由于“正面向上”的频率呈现出上述稳定性,我们就用0.5这个常数表示“正面向上”发生的可能性的大小.
在抛掷一枚硬币时,结果不是“正面向上”就是“反面向上”,因此,从上面提到的试验中也能得到相应“反面向上”的频率. 当“正面向上”的频率逐渐稳定到0.5时,“反面向上”的频率呈现什么规律吗?容易看出,“反面向上”的频率也相应地稳定到0.5,于是我们也用0.5这个常数表示“反面向上”发生的可能性的大小,至此,试验验证了我们的猜想:抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).
理性提升
因为在n次试验中,事件A发生的频数m满足0≤m≤n,
所以 ,进而可知频率 所稳定到的常数p满足0≤p≤1,因此0≤P(A) ≤1
上面我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件发生的可能性的大小.
一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p .
事件一般
用大写英文字
母A,B,C…
表示
理性提升
从上面可知,概率是通过大量重复试验中频率的稳定性得到的一个0~1的常数,它反映了事件发生的可能性的大小. 需要注意,概率是针对大量试验而言的,大量试验反映的规律并非在每次试验中一定存在.
掷硬币时“正面向上”的概率是 ,这是从大量试验中产生的. 某人连掷硬币50次,结果只有10次正面向上,这种情况完全正常. 因为概率是 并不保证掷2n次硬币一定有n次左右为正面向上,只是当n越来越大时,正面向上的频率会越来越接近 .
某人连掷硬币50次,结果只有10次正面向上,这种情况完全正常?
理性提升
1.下表记录了一名球员在罚球线上投篮的结果.
投篮次数(n) 50 100 150 200 250 300 350
投中次数(m) 28 60 78 104 123 152 251
投中频率( )
(1)计算表中的投中频率(精确到0.01);
0.56
0.6
0.52
0.52
0.49
0.51
0.5
练 习
(2)这名球员投篮一次,投中的概率约是多少?(精确到0.1)?
这名球员投中的频率逐渐稳定在0.5,因此估计这名球员投篮的概率是0.5
随堂练习
某林业部门要考查某种幼树在一定条件下的移植成活率,应
采用什么具体做法
观察在各次试验中得到的幼树成活的频率,谈谈
你的看法.
估计移植成活率
移植总数(n) 成活数(m)
10 8
成活的频率
0.8
( )
50 47
270 235 0.870
400 369
750 662
1500 1335 0.890
3500 3203 0.915
7000 6335
9000 8073
14000 12628 0.902
0.94
0.923
0.883
0.905
0.897
是实际问题中的一种概率,可理解为成活的概率.
估计移植成活率
由下表可以发现,幼树移植成活的频率在____左右摆动,
并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为_____.
0.9
0.9
移植总数(n) 成活数(m)
10 8
成活的频率
0.8
( )
50 47
270 235 0.870
400 369
750 662
1500 1335 0.890
3500 3203 0.915
7000 6335
9000 8073
14000 12628 0.902
0.94
0.923
0.883
0.905
0.897
数学史实
人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.
由频率可以估计概率是由瑞士数学家雅各布·伯努利(1654-1705)最早阐明的,因而他被公认为是概率论的先驱之一.
频率稳定性定理
由下表可以发现,幼树移植成活的频率在____左右摆动,
并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为_____.
0.9
0.9
移植总数(n) 成活数(m)
10 8
成活的频率
0.8
( )
50 47
270 235 0.870
400 369
750 662
1500 1335 0.890
3500 3203 0.915
7000 6335
9000 8073
14000 12628 0.902
0.94
0.923
0.883
0.905
0.897
1.林业部门种植了该幼树1000棵,估计能成活_______棵.
2.我们学校需种植这样的树苗500棵来绿化校园,则至少
向林业部门购买约_______棵.
900
556
估计移植成活率
例1:张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗可以选择,它们的成活率如下两个表格所示: A类树苗: B类树苗:
移植总数(m) 成活数(m) 成活的频率(m/n)
10 8
50 47
270 235
400 369
750 662
1500 1335
3500 3203
7000 6335
14000 12628
移植总数(m) 成活数(m) 成活的频率(m/n)
10 9
50 49
270 230
400 360
750 641
1500 1275
3500 2996
7000 5985
14000 11914
0.8
0.94
0.870
0.923
0.883
0.890
0.915
0.905
0.902
0.9
0.98
0.85
0.9
0.855
0.850
0.856
0.855
0.851
观察图表,回答问题串
1、从表中可以发现,A类幼树移植成活的频率在_____左右摆动,并且随着统计数据的增加,这种规律愈加明显,估计A类幼树移植成活的概率为____,估计B类幼树移植成活的概率为___. 2、张小明选择A类树苗,还是B类树苗呢?_____,若他的荒山需要10000株树苗,则他实际需要进树苗________株? 3、如果每株树苗9元,则小明买树苗共需 ________元.
0.9
0.9
0.85
A类
11112
100008
共同练习
51.54
500
44.57
450
39.24
400
35.32
350
30.93
300
24.25
250
19.42
200
15.15
150
0.105
10.5
100
0.110
5.50
50
柑橘损坏的频率( )
损坏柑橘质量(m)/千克
柑橘总质量(n)/千克
n
m
完成下表,
0.101
0.097
0.097
0.103
0.101
0.098
0.099
0.103
某水果公司以2元/千克的成本新进了10 000千克柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适
为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?
利用你得到的结论解答下列问题:
根据频率稳定性定理,在要求精度不是很高的情况下,不妨用表中的最后一行数据中的频率近似地代替概率.
共同练习
51.54
500
44.57
450
39.24
400
35.32
350
30.93
300
24.25
250
19.42
200
15.15
150
0.105
10.5
100
0.110
5.50
50
柑橘损坏的频率( )
损坏柑橘质量(m)/千克
柑橘总质量(n)/千克
n
m
0.101
0.097
0.097
0.103
0.101
0.098
0.099
0.103
为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?
完成下表,
利用你得到的结论解答下列问题:
试一试
1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾.
310
270
2.动物学家通过大量的调查估计出,某种动物活到20岁
的概率为0.8,活到25岁的概率是0.5,活到30岁的概率
是0.3.现年20岁的这种动物活到25岁的概率为多少?现
年25岁的这种动物活到30岁的概率为多少?
概率伴随着我你他
1.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少 该镇看中央电视台早间新闻的大约是多少人
解:
根据概率的意义,可以认为其概率大约等于250/2000=0.125.
该镇约有100000×0.125=12500人看中央电视台的早间新闻.
例3
2.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生,并在调查到1 000名、2 000名、3 000名、4 000名、5 000名时分别计算了各种颜色的频率,绘制折线图如下:
试一试
(1)随着调查次数的增加,红色的频率如何变化?
(2)你能估计调查到10 000名同学时,红色的频率是多少吗?
估计调查到10 000名同学时,红色的频率大约仍是40%左右.
随着调查次数的增加,红色的频率基本稳定在40%左右.
(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?
红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:1:2 .
从一定的高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不找地,估计一下哪种事件的概率更大,与同学合作,通过做实验来验证
一下你事先估计是否正确?
例4
你能估计图钉尖朝上的概率吗?
大家都来做一做
知识应用
如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有150次是落在不规则图形内.
【拓展】
你能设计一个利用频率估计概率的实验方法估算该不规则图形的面积的方案吗
(1)你能估计出掷中不规则图形的概率吗?
(2)若该长方形的面积为150平方米,试估计不规则图形的面积.
升华提高
了解了一种方法-------用多次试验频率去估计概率
体会了一种思想:
用样本去估计总体
用频率去估计概率
弄清了一种关系------频率与概率的关系
当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.
小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,掷中里面小圈小明胜,未掷入大圈内不算,你认为游戏公平吗?为什么?
游戏公平吗?
3m
2m
2.用前面掷硬币的试验方法,全班同学分组做掷骰子的试验,估计掷
一次骰子时“点数是1”的概率.
随堂练习