第25章 概率初步 单元综合与测试 B卷(含答案)

文档属性

名称 第25章 概率初步 单元综合与测试 B卷(含答案)
格式 zip
文件大小 335.7KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2021-11-15 14:02:07

图片预览

文档简介

中小学教育资源及组卷应用平台
人教版九上数学 第25章 概率初步 单元综合与测试 B卷
一、选择题(每小题3分,共30分)
1、下列事件属于不可能事件的是( )
A.抛一次骰子,向上的一面是点 B.打开电视机,正在转播足球比赛
C.地球上,向上抛的篮球会下落 D.从只有红球的袋子中,摸出个白球
2、某口袋里现有个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验次,其中有个红球,估计绿球个数为( )
A.6 B.12 C.13 D.25
3、桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则(  )
A.能够事先确定抽取的扑克牌的花色 B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大 D.抽到红桃的可能性更大
4、某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是(  )
A. B. C. D.
5、根据电视台天气预报:某市明天降雨的概率为80%,对此信息,下列几种说法中正确的是( )
A.该市明天一定会下雨 B.该市明天有80%地区会降雨
C.该市明天有80%的时间会降雨 D.该市明天下雨的可能性很大
6、王阿姨在网上看中了一款防雾霾口罩,付款时需要输入11位的支付密码,她只记得密码的前8位,后3位由1,7,9这3个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是(  )
A. B. C. D.
7、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球(  )
A.10个 B.20个 C.30个 D.无法确定
8、甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )
A.甲 B.乙 C.丙 D.不能确定
9、某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )
A.抛一枚硬币,出现正面朝上
B.掷一个正六面体的骰子,出现3点朝上
C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
10、一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2. 随机摸出一个小球(不放回),其数字记为,再随机摸出另一个小球,其数字记为,则满足关于的方程=0有实数根的概率是( )
A. B. C. D.
填空题(每小题3分,共24分)
11、袋子里装有两个红球,它们除颜色外完全相同.从袋中任意摸出一球,摸出一个为红球,称为___事件;摸出一个为白球,称为____事件;(选填“必然”“不确定”“不可能”)
12、中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是______.
13、如图,是一幅普通扑克牌中的13张黑桃牌,将它们洗均匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为 .
14、只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是个红球,个白球和个黑球,搅匀之后,每次摸出一只小球不放回.在连续次摸出的都是黑球的情况下,第次摸出黑球的概率是________.
15、八年级(1)班有男生有15人,女生20人,从班中选出一名学习委员,任何人都有同样的机会,则这班选中一名女生当学习委员的可能性的大小是 _____.
16、在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色与红球不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.
17、某鱼塘里养了条鲤鱼、若干条草鱼和条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为_________.
18、为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.
三、解答题(19-21题,每题8分;22-24题,每题10分;25题12分。共计66分)
19、(8分)一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.
20、(8分)在不透明的袋子中装有5个红球和8个黄球,每个球除颜色外都相同.
(1)从中任意摸出一个球,摸到   球的可能性大.
(2)如果再放入若干个黄球并摇匀,随机摸出一个球是红球的概率是,请问放入了多少个黄球?
21、(8分)动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?
22、(10分)小丽和小刚都想参加学校组织的暑期实践活动,但只有一个名额,小丽提议:将一个转盘9等分,分别将9个区间标上1至9个9号码,随意转动-次转盘,根据指针指向区间决定谁去参加活动,具体规则:若指针指向偶数区间,小刚去参加活动;若指针指向奇数区间,小丽去参加活动.
(1)求小刚去参加活动的概率是多少
(2)你认为这个游戏公平吗 请说明理由.
23、(10分)如图所示,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.
(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是 (只需要填一个三角形);
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC面积相等的概率.
24、(10分)在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
摸球的次数n 100 150 200 500 800 1000
摸到白球的次数m 58 96 116 295 484 601
摸到白球的频率 0.58 0.64 0.58 0.59 0.605 0.601
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.
25、(12分)在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)
(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为______;
(3)试估算盒子里黑、白两种颜色的球各有多少只?
参考答案:
一、1、D 2、B 3、B 4、D 5、D 6、C 7、B 8、C 9、D 10、A
二、11、必然 不可能
20
20000
三、解答题
19、
【分析】
先利用树状图展示所有9种等可能的结果数,即组成的两位数为33,34,35,43,44,45,53,54,55;其中十位上的数字与个位上的数字之和为9的两位数有45和54两个,然后根据概率的概念计算即可.
【详解】
画树状图如下:
共有9种等可能的结果数,即按这种方法能组成的两位数有33,34,35,43,44,45,53,54,55;其中十位上的数字与个位上的数字之和为9的两位数有45和54两个,
∴P(十位与个位数字之和为9)=.
20、(1)黄;(2)2.
【分析】
(1)分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大;
(2)由红球所占的份数可求出总数目,进而可求出放入黄球的个数.
【详解】
(1)摸到红球的概率为=,摸到黄球的概率为:,所以摸到黄球的可能性大.
故答案为黄;
(2)∵随机摸出一个球是红球的概率是,∴总的小球数=5÷=15(个),∴放入黄球的个数=15﹣13=2.
【点睛】
本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
21、现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.
【详解】
试题分析:
根据概率的定义,用活到25岁的概率除以活到20岁的概率可得到现年20岁的这种动物活到25岁的概率;用活到30岁的概率除以活到25岁的概率可得到现年25岁的这种动物活到30岁的概率
试题解析:
现年20岁的这种动物活到25岁的概率为=0.625,
现年25岁的这种动物活到30岁的概率为=0.6,
答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.
22、(1);(2)这个游戏不公平,理由见解析.
【分析】
(1)根据简单事件的概率计算公式即可得;
(2)先根据简单事件的概率计算公式求出小丽去参加活动的概率,再与(1)的结论进行大小比较即可得.
【详解】
(1)小刚转动一次转盘的所有可能结果共有9种,它们每一种出现的可能性都相等,其中,指针指向偶数区间的结果共有4种
则小刚去参加活动的概率是;
(2)这个游戏不公平,理由如下:
小丽转动一次转盘的所有可能结果共有9种,它们每一种出现的可能性都相等,其中,指针指向奇数区间的结果共有5种
则小丽去参加活动的概率是
这个游戏不公平.
【点睛】
本题考查了简单事件的概率计算,理解题意,正确列出事件的所有可能的结果是解题关键.
23、(1)△DFG或△DHF;(2).
【分析】
(1)、根据“同(等)底同(等)高的三角形面积相等”进行解答;(2)、画树状图求概率.
【详解】
(1)、的面积为:,
只有△DFG或△DHF的面积也为6且不与△ABC全等,
与△ABC不全等但面积相等的三角形是:△DFG或△DHF;
(2)、画树状图如图所示:
由树状图可知共有6种等可能结果, 其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,
所以所画三角形与△ABC面积相等的概率P=
答:所画三角形与△ABC面积相等的概率为.
【点睛】
本题综合考查了三角形的面积和概率.
24、(1)0.6;(2),;(3)12,8
【详解】
试题分析:(1)本题需先根据表中的数据,估计出摸到白球的频率.(2)本题根据摸到白球的频率即可求出摸到白球和黑球的概率.(3)根据口袋中黑、白两种颜色的球的概率即可求出口袋中黑、白两种颜色的球有多少只.
试题解析:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.6;
(2)因为当n很大时,摸到白球的频率将会接近0.6;
所以摸到白球的概率是;摸到黑球的概率是
(3)因为摸到白球的概率是,摸到黑球的概率是,
所以口袋中黑、白两种颜色的球有白球是个,
黑球是个
25、(1)0.6;(2)0.6;(3)盒子里黑、白两种颜色的球各有16和24只.
【分析】
(1)计算出其平均值即可;
(2)概率接近于(1)得到的频率;
(3)白球个数=球的总数×摸到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.
【详解】
解:(1)∵摸到白球的频率平均值为0.6,
∴当n很大时,摸到白球的频率将会接近0.6.
故答案为0.6;
(2)∵摸到白球的频率为0.6,
∴假如你摸一次,你摸到白球的概率P(白球)=0.6.
故答案为0.6;
(3)盒子里白球的数量为:40×0.6=24(只),
盒子里黑球的数量为:40﹣24=16(只).
故答案为:盒子里黑、白两种颜色的球各有16和24只.
【点睛】
本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.
21世纪教育网(www.21cnjy.com)