中小学教育资源及组卷应用平台
人教版九上数学 第25章 概率初步 单元综合与测试 C卷
一、选择题(每小题3分,共30分)
1、事件A:射击运动员射击一次,刚好射中靶心;事件B:连续掷两次硬币,都是正面朝上,则( )
A.事件A和事件B都是必然事件
B.事件A是随机事件,事件B是不可能事件
C.事件A是必然事件,事件B是随机事件
D.事件A和事件B都是随机事件
2、如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、9.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )
A. B. C. D.
3、不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是( ).
A.3个都是黑球 B.2个黑球1个白球
C.2个白球1个黑球 D.至少有1个黑球
4、到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是( )
A. B. C. D.
5、小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,7这7个数中任意选择一个数字,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;若两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.若你是游戏者,为了获胜,你会选择数( )
A.7 B.6 C.5 D.4
6、下列说法正确的是 ( )
A.“经过有交通信号的路口,遇到红灯,” 是必然事件
B.已知某篮球运动员投篮投中的概率为,则他投次一定可投中次
C.处于中间位置的数一定是中位数
D.方差越大数据的波动越大,方差越小数据的波动越小
7、有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( )
A. B. C. D.
8、小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )
A. B. C. D.
9、从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是,摸到红球的概率是,则( )
A. =1,=1 B. =0,=1 C. =0,= D. ==
10、“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是( )
A. B. C. D.
填空题(每小题3分,共24分)
11、在一个不透明布袋里装有3个白球、2个红球和个黄球,这些球除颜色不同其它没有任何区别.若从该布袋里任意摸出1个球,该球是黄球的概率为,则等于_____.
12、如图,是可以自由转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码 ________上的可能性最大.
13、在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为,那么口袋中小球共有_______个.
14、在一块试验田抽取1000个麦穗考察它的长度(单位:cm)对数据适当分组后看到落在5.75~6.05之间的频率为0.36,于是可以估计出这块田里长度为5.75~6.05cm之间的麦穗约占________%.
15、如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;则从第(n)个图中随机取出一个球是黑球的概率是 .
16、已知一次函数 ,其中 从1,-2中随机取一个值, 从-1,2,3中随机取一个值,则该一次函数的图象经过一,二,三象限的概率为_____
17、黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是____kg.
18、田大伯为与客户签订销售合同,需了解自己鱼塘里鱼的数量,为此,他从鱼塘先捞出200条鱼做上标记再放入鱼塘,经过一段时间后又捞出300条,发现有标记的鱼有20条,则田大伯的鱼塘里鱼的条数大约是_________条.
三、解答题(19-21题,每题8分;22-24题,每题10分;25题12分。共计66分)
19、(8分)中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?
20、(8分)周日在家里,小明和爸爸、妈妈都想使用电脑上网,可是家里只有一台电脑,为了公平,小明设计了下面的游戏规则,确定谁使用电脑上网.
游戏规则:任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则小明使用电脑.你认为这个游戏规则对谁更有利,并说明理由.
21、(8分)某市今年中考理化实验操作考试,采用学生抽签方式决定自己的考试内容.规定每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学试验(用纸签D、E、F表示)中各抽取一个实验操作进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.用列表或画树状图的方法求小刚抽到物理实验B和化学实验F的概率.
22、(10分)在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个. 已知从中任意摸出1个球得白球的概率为.
(1)求口袋中有多少个红球;
(2)求从袋中一次摸出2个球,得一红一白的概率.(要求画出树状图)
23、(10分)学校新年联欢会上某班矩形有奖竞猜活动,猜对问题的同学即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为台灯、笔记本、签字笔.请问:
(1)摇奖一次,获得笔记本的概率是多少?
(2)小明答对了问题,可以获得一次摇奖机会,请问小明能获得奖品的概率有多大?请你帮他算算.
24、(10分)密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××
小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是 .
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;
(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.
25、(12分)某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:
转动转盘的次数n 100 150 200 500 800 1000
落在“铅笔”的次数m 68 111 136 345 546 701
落在“铅笔”的频率 (结果保留小数点后两位) 0.68 0.74 0.68 0.69 0.68 0.70
(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)
(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;
(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.
参考答案:
一、1、D 2、A 3、D 4、B 5、A 6、D 7、C 8、B 9、B 10、B
二、11、5
12、5
13、15
14、36
15、
16、
17、560kg.
18、3000
三、解答题
19、
【分析】
根据题意可得注明奖金的商标牌还有3块,未翻的牌子还有18块,根据概率公式求解即可.
【详解】
根据题意可得,他第三次翻牌获奖的概率是:=.
故答案为.
【点睛】
本题考查求概率.
20、此游戏对小明有利.
【分析】
利用树状图法得出所有的可能,进而分别求出获胜的概率即可.
【详解】
如图所示:
,
所有的可能为;(正,正),(正,反),(反,正),(反,反),
故爸爸获胜的概率为:,妈妈获胜的概率为:,小明获胜的概率为:,
故此游戏对小明有利.
【点睛】
本题考查了游戏公平性,正确利用树状图法求概率是解题的关键.
21、小刚抽到物理实验B和化学实验F的概率为.
【详解】
试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.
试题解析:
化学实验物理实验 D E F
A (A,D) (A,E) (A,F)
B (B,D) (B,E) (B,F)
C (C,D) (C,E) (C,F)
从表格可以看出,所有可能出现的结果共有9种,其中抽到物理实验B和化学实验F出现了一次,所以小刚抽到物理实验B和化学实验F的概率=.
22、解:(1)设袋中有x个红球,据题意得,解得x=1
∴袋中有红球1个;
(2)P(摸得一红一白)=
23、(1);(2)
【解析】
【分析】
(1)直接利用概率公式求出答案;
(2)首先得出中奖的可能数除以总数,求出答案.
【详解】
解:(1)如图所示:黄色的有2个,则摇奖一次,获得笔记本的概率是:=;
(2)如图所示:获奖的机会有7个,故一次摇奖,能获得奖品的概率为:.
【点睛】
本题考察的知识点是几何概率, 解题的关键是熟练的掌握几何概率.
24、(1)1或2(2) (3)30种
【分析】
(1)根据每个月分为上旬、中旬、下旬,分别是:上旬:1日﹣10日 中旬:11日﹣20日 下旬:21日到月底,由此即可解决问题;
(2)利用列举法即可解决问题;
(3)小张同学是6月份出生,6月份只有30天,推出第一个转轮设置的数字是6,第三个转轮设置的数字可能是0,1,2,3;第二个转轮设置的数字可能,0,1,2,…9;由此即可解决问题;
【详解】
解:(1)∵小黄同学是9月份中旬出生,∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2.
故答案为1或2;
(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;
能被3整除的有912,915,918;
密码数能被3整除的概率.
(3)小张同学是6月份出生,6月份只有30天,∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能,0,1,2,…9(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0),∴一共有9+10+10+1=30,∴小张生日设置的密码的所有可能个数为30种.
【点睛】
本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
25、(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36
【分析】
(1)利用频率估计概率求解;
(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;
(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,则4000×3×+4000×0.5(1-)=3000,然后解方程即可.
【详解】
(1)转动该转盘一次,获得铅笔的概率约为0.7;
故答案为 0.7
(2)4000×0.5×0.7+4000×3×0.3=5000,
所以该商场每天大致需要支出的奖品费用为5000元;
(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,
则4000×3×+4000×0.5(1﹣)=3000,解得n=36,
所以转盘上“一瓶饮料”区域的圆心角应调整为36度.
故答案为36.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.
21世纪教育网(www.21cnjy.com)