2021-2022学年人教版数学八年级下册第十八章平行四边形测试卷(word版含答案)

文档属性

名称 2021-2022学年人教版数学八年级下册第十八章平行四边形测试卷(word版含答案)
格式 doc
文件大小 166.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-11-16 14:41:22

图片预览

文档简介

第十八章达标测试卷
一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)
1.如图,菱形ABCD中,∠D=150°,则∠1=(  )
A.30° B.25° C.20° D.15°
INCLUDEPICTURE"BT68.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\BT68.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\BT68.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\BT68.tif" \* MERGEFORMATINET INCLUDEPICTURE"QA9.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\QA9.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\QA9.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\QA9.tif" \* MERGEFORMATINET INCLUDEPICTURE"新加+6.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\新加+6.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\新加+6.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\新加+6.tif" \* MERGEFORMATINET
(第1题)      (第2题)      (第4题)
2.如图, ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为(  )
A.12 cm B.9 cm C.6 cm D.3 cm
3.下列四组条件中,不能判定四边形ABCD是平行四边形的是(  )
A.AB=DC,AD=BC B.AB∥DC,AD∥BC
C.AB∥DC,AD=BC D.AB∥DC,AB=DC
4.如图,在Rt△ABC中,∠B=90°,BC=12,AB=5,则斜边上的中线BO长是(  )
A.2.5 B.4 C.6 D.6.5
5.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为一边的正方形ACEF的周长为(  )
A.14 B.15 C.16 D.17
INCLUDEPICTURE"JR6.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\JR6.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\JR6.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\JR6.tif" \* MERGEFORMATINET INCLUDEPICTURE"W15g.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\W15g.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\W15g.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\W15g.tif" \* MERGEFORMATINET INCLUDEPICTURE"XD36.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\XD36.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\XD36.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\XD36.tif" \* MERGEFORMATINET
(第5题)     (第7题)      (第8题)
6.下列说法中,正确的个数有(  )
①对顶角相等;
②两直线平行,同旁内角相等;
③对角线互相垂直的四边形为菱形;
④对角线互相垂直平分且相等的四边形为正方形.
A.1个 B.2个 C.3个 D.4个
7.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是(  )
A.16 B.16 C.8 D.8
8.将五个边长都为2 cm的正方形按如图所示方式摆放,点A,B,C,D分别是四个正方形的中心,则图中四块阴影部分面积的和为(  )
A.2 cm2 B.4 cm2 C.6 cm2 D.8 cm2
9.如图,在矩形ABCD中,AD=3AB,点G,H分别在AD,BC上,连接BG,DH,且BG∥DH,若四边形BHDG为菱形,则=(  )
A.   B. C. D.
INCLUDEPICTURE"D120.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\D120.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\D120.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\D120.tif" \* MERGEFORMATINET INCLUDEPICTURE"新加+7.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\新加+7.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\新加+7.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\新加+7.tif" \* MERGEFORMATINET INCLUDEPICTURE"OO25.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\OO25.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\OO25.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\OO25.tif" \* MERGEFORMATINET
(第9题)     (第10题)    (第11题)
10.如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠纸片使得AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB,AC于E,G,连接FG,EF,下列结论:①∠AGD=112.5°;②AD∶AE=2∶1;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG,其中正确结论的个数是(  )
A.2 B.3 C.4 D.5
二、填空题(本题共6小题,每小题3分,共18分)
11.如图, ABCD中,AC,BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.
12.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件:____________,使四边形ABCD成为菱形(只需添加一个即可).
INCLUDEPICTURE"TT1.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\TT1.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\TT1.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\TT1.tif" \* MERGEFORMATINET INCLUDEPICTURE"ED29.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\ED29.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\ED29.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\ED29.tif" \* MERGEFORMATINET INCLUDEPICTURE"w23g.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\w23g.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\w23g.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\w23g.tif" \* MERGEFORMATINET
(第12题)      (第14题)       (第16题)
13.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.
14.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF.若CE=1 cm,则BF=__________.
15.矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为________.
16.如图,在边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,…,按此规律所作的第n个菱形的边长是________.
三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)
17.(8分)如图,在 ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.
求证:AG=CH.
INCLUDEPICTURE"OO20.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\OO20.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\OO20.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\OO20.tif" \* MERGEFORMATINET
18.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.
(1)求证:AE=BF;
(2)若正方形的边长是5,BE=2,求AF的长.
INCLUDEPICTURE"OO93.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\OO93.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\OO93.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\OO93.tif" \* MERGEFORMATINET
19.(8分)如图, ABCD的对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
INCLUDEPICTURE"OO59.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\OO59.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\OO59.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\OO59.tif" \* MERGEFORMATINET
20.(8分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.
INCLUDEPICTURE"新加+8.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\新加+8.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\新加+8.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\新加+8.tif" \* MERGEFORMATINET
(1)求证:四边形ABCD是菱形;
(2)若AE=5,OE=3,求线段CE的长.
21.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,AN为△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E.
(1)求证:四边形ADCE是矩形;
(2)连接DE,试判断四边形ABDE的形状,并说明理由;
(3)△ABC再添加一个什么条件时,可使四边形ADCE是正方形,并证明你的结论.
INCLUDEPICTURE"新加+9.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\新加+9.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\新加+9.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\新加+9.tif" \* MERGEFORMATINET
22.(10分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.
(1)如图①,在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,求证:中点四边形EFGH是平行四边形;
(2)如图②,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,判断中点四边形EFGH的形状,并说明理由;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).
INCLUDEPICTURE"PJ56.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\PJ56.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\PJ56.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\PJ56.tif" \* MERGEFORMATINET
答案
一、1.D 2.C 3.C 4.D 5.C 6.B
7.C 8.B
9.C  点拨:在矩形ABCD中,AD=3AB,设AB=1,则AD=3.若四边形BHDG为菱形,则BG=GD,设BG=GD=x,则AG=3-x.在Rt△ABG中,1+=x2 ,解得x=,所以==.
10.B 点拨:∵四边形ABCD是正方形,
∴∠GAD=∠ADO= 45°,
由折叠的性质可得,
∠ADG=∠ADO= 22.5°,
∴∠AGD=180°-45°-22.5°=112.5°,
故①正确;
由折叠的性质可得AE=EF,
∠EFD=∠EAD=90°,
∴AE=EF∴AE故②错误;
由折叠的性质可得AG=FG.
∵∠AOB= 90°,
∴AG =FG >OG,又∵△AGD与△OGD同高,
∴S△AGD>S△OGD,
故③错误;
∵∠EFD=∠AOF=90°,
∴EF∥AC,
∴∠FEG=∠AGE.
∵由折叠的性质得∠AGE=∠FGE,
∴∠FEG=∠FGE,
∴EF=GF,
∴AE=EF=GF=AG,
∴四边形AEFG是菱形,
故④正确;
∵四边形AEFG是菱形,
∴AE∥GF.
∴∠OGF=∠OAB=45°.
∵∠AOB=90°,
∴∠OFG=∠OGF=45°,
∴OG=OF,
∴GF==OG,
∴EF=OG.
同理可得BE=EF,
∴BE=×OG=2OG,
故⑤正确.
故选B.
二、11.14 
12.OA=OC(答案不唯一)
13.三 
14.(2+)cm 点拨:过点E作EG⊥BD于点G.
∵BE平分∠DBC,∠EGB=∠BCE=90°,
∴EG=EC=1 cm.
易知△DEG为等腰直角三角形,
∴DE=EG=cm.
∴CD=(1+)cm,
∴BC=(1+)cm.
又∵CF=CE=1 cm,
∴BF=(2+)cm.
15. 点拨:设AC与BD交于点O,连接PO,过D作DG⊥AC于G,由△AOD的面积=△AOP的面积+△POD的面积,可得PE+PF=DG,易得PE+PF=.
16.()n-1 点拨:连接DB与AC相交于M.
∵四边形ABCD是菱形,
∴AD=AB,AC⊥DB.
∵∠DAB=60°,
∴△ADB是等边三角形.
∴DB=AD=1.
∴DM=.
∴AM=.
∴AC=.
同理可得AE=AC=()2,AG=AE=3 =()3,…,按此规律所作的第n个菱形的边长为()n-1.
三、17.证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∠A=∠C.
∴∠F=∠E.
∵BE=DF,
∴AD+DF=CB+BE,即AF=CE.
在△AGF和△CHE中,
∴△AGF≌△CHE(ASA).
∴AG=CH.
18.(1)证明:∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°.
∴∠BAE+∠AEB=90°.
∵BH⊥AE,
∴∠BHE=90°.
∴∠AEB+∠EBH=90°.
∴∠BAE=∠EBH.
在△ABE和△BCF中,
∴△ABE≌△BCF(ASA).
∴AE=BF.
(2)解:由(1)得△ABE≌△BCF,
∴BE=CF.
∵正方形的边长是5,BE=2,
∴DF=CD-CF=CD-BE=5-2=3.
在Rt△ADF中,由勾股定理得
AF===.
19.(1)证明:∵四边形ABCD是平行四边形,
∴BF∥CD,AB=CD.
∴∠AFC=∠DCG.
∵易得GA=GD,∠AGF=∠DGC,
∴△AGF≌△DGC(AAS).
∴AF=CD.
∴AB=AF.
(2)解:四边形ACDF是矩形.
证明:∵由(1)得AF=CD,AF∥CD,
∴四边形ACDF是平行四边形.
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120°.
∴∠FAG=60°.
∵AB=AG=AF,
∴△AGF是等边三角形.
∴AG=GF.
∵△AGF≌△DGC,
∴FG=CG.
又∵AG=GD,
∴AD=CF.
∴四边形ACDF是矩形.
20.(1)证明:∵AB∥CD,
∴∠OAB=∠DCA.
∵AC平分∠BAD,
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD.
∵AB=AD,∴AB=CD.
又∵AB∥CD,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴四边形ABCD是菱形.
(2)解:由(1)知四边形ABCD是菱形,
∴AO=CO,
∵CE⊥AB,
∴∠AEC=90°,
∴AC=2OE=6.
在Rt△ACE中,CE==.
21.(1)证明:在△ABC中,∵AB=AC,AD为∠BAC的平分线,
∴AD⊥BC,∠BAD =∠CAD=∠BAC,
∴∠ADC=90°.
∵AN为△ABC的外角∠CAM的平分线,
∴∠MAN=∠CAN=∠CAM,
∴∠DAE=∠DAC+∠CAN=∠BAC+∠CAM=×180°=90°.
∵CE⊥AN,
∴∠AEC=90°,
∴四边形ADCE是矩形.
(2)解:四边形ABDE是平行四边形.
理由:由(1)知,四边形ADCE是矩形,
则AE=CD,AE∥CD.
∵AB=AC,AD为∠BAC的平分线,
∴BD=CD,∴AE=BD.
又∵AE∥BD,
∴四边形ABDE是平行四边形.
(3)解:当∠BAC=90°时,四边形ADCE是正方形.
证明:∵∠BAC=90°,AB=AC,
AD为∠BAC的平分线,
∴AD=CD=BD.
又∵四边形ADCE是矩形,
∴四边形ADCE是正方形.
22.(1)证明:如图①,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH=BD.
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG=BD.
∴EH∥FG,EH=FG.
∴中点四边形EFGH是平行四边形.
INCLUDEPICTURE"PJ57.tif" INCLUDEPICTURE "D:\\方正转Word\\8R福建\\PJ57.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\方正转Word\\8R福建\\PJ57.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\福建\\8R\\PJ57.tif" \* MERGEFORMATINET
(2)解:中点四边形EFGH是菱形.
理由:如图②,连接AC,BD.
∵∠APB=∠CPD,
∴∠APB+∠APD=∠CPD+∠APD,
即∠BPD=∠APC.
在△APC和△BPD中,
∴△APC≌△BPD(SAS).
∴AC=BD.
∵点E,F,G分别为边AB,BC,CD的中点,
∴EF=AC,FG=BD.∴EF=FG.
又由(1)中结论知中点四边形EFGH是平行四边形,
∴中点四边形EFGH是菱形.
(3)解:中点四边形EFGH是正方形.