山东省青岛市4区市2021-2022学年高一上学期期中考试数学试题(PDF版含答案)

文档属性

名称 山东省青岛市4区市2021-2022学年高一上学期期中考试数学试题(PDF版含答案)
格式 zip
文件大小 428.3KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2021-11-16 18:24:09

文档简介

2021-2022 学年度第一学期期中学业水平检测
高一数学试题
本试卷共 4 页,22 题.全卷满分 150 分.考试用时 120 分钟.
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将条形码
粘贴在答题卡指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改
动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷
上无效。
3.考试结束后,请将答题卡上交。
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有
一项是符合题目要求的。
1.设集合 A {x R | x 2 4x 0},B {0,1,2,3,4},则 A B
A.{1,2,3,4} B.{0,1,2,3,4} C.{0,1,2,3} D.{1,2,3}
1
2.函数 f (x) 2x 8 的定义域是
x 3
A. (3, ) B.[3, ) C. (4, ) D.[4, )
3.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记
录法记录视力数据,小数记录法的数据V 和五分记录法的数据 L满足V 10L 5 ,已知某同学视
力的五分记录法的数据为 4.9,则其视力的小数记录法的数据约为(注: 10 10 1.25 )
A.0.6 B.0.8 C.1.2 D.1.5
4.已知函数 f (x)和 g(x)的定义域为{2,3,4,5},其对应关系如下表,则 g( f (x)) 的值域为
x 2 3 4 5
f (x) 4 2 5 2
g(x) 4 3 2 4
A.{2,3} B.{2,4} C.{3,4} D.{2,3,4}
a 1
3 3 1 3
5.若 ( ) 2 ,b ( ) 4 c 3, ( ) 4 ,则 a,b, c的大小关系是
2 4 4
A. a b c B.b a c C.b c a D. c b a
高一数学试题 第 1 页 共 4 页
(2 a)x 1, x 1
6.已知函数 f (x) x 是R 上的单调递增函数,则实数 a的取值范围是
a , x 1
a 1 1 3 3A. B. a C.1 a 2 D. 1 a
2 2
f (x ) f (x )
7.已知函数 f (x)为偶函数,且对任意互不相等的 x1, x2 (0, ),都有 1 2 0成立,x1 x2
且 f ( 2) 0,则 xf (x) 0的解集为
A. ( , 2) (0,2) B. ( 2,2)
C. ( , 2) (2, ) D. ( 2,0) (2, )
8.已知函数 f (x)为实数集上的增函数,且满足 f ( f (x) 2 x) 3 ,则 f (2)
A.3 B. 4 C.5 D.6
二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的四个选项中,有多项
符合题目要求。全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分。
9.下列函数中,既是偶函数,又在 (0, )上单调递增的为
A. f (x) | x | B. f (x) x3 f (x) 2|x| f (x) 1 C. D.
x2
10.已知 a,b R 且 a b,则
1 1
A. B. (1)a (1)b C.3a b 1 D. a3 b3
a b 2 2
11.已知幂函数 f (x)的图象经过点 (2, 2),则下列命题正确的是
A.函数 f (x)为增函数
B.函数 f (x)的值域为[0, )
C.函数 f (x)为奇函数
x x
D.若0 x 1 2 f (x1) f (x2 )1 x2,则 f ( ) 2 2
高一数学试题 第 2 页 共 4 页
12.下列说法正确的是
A.“若 2a 2b,则 a2 b2”是真命题
B.已知集合 A,B均为实数集R 的子集,且 RB A,则 ( RA) B B
C.对于函数 y f (x) , x R ,“ y f (x 1)是偶函数 ”是“ y f (x)的图象关于
直线 x 1轴对称”的充要条件
D.若命题“ x R ,x2 mx 1 0”的否定是真命题,则实数m的取值范围是 2 m 2
三、填空题:本题共 4 个小题,每小题 5 分,共 20 分。
16 1 4 1
13.计算 4 ( ) 2 (2 2) 3 3 3 93 .
25
14.已知函数 f (x) (e x ke x )x2的图象关于原点中心对称,则实数 k .
5
15.已知0 x ,则 x(5 4x) 的最大值为 .
4
16.在1872年,“戴金德分割”结束了持续 2000 多年的数学史上的第一次危机.所谓戴金德分割,
是指将有理数集Q划分为两个非空子集 A与 B,且满足 A B Q, A B , A中的每
一个元素都小于 B中的每一个元素,则称这样的 A与 B为戴金德分割,请给出一组满足 A无
最大值且 B无最小值的戴金德分割 .
四、解答题:本题共 6 小题,共 70 分。解答应写出文字说明,证明过程或演算步骤。
17.(10 分)
U R A {x R | 1 (1已知全集 ,集合 ) x 9},集合 B {x R | x2 2x a 0},集合
3 3
C {x R |m 1 x 2m}, A B {x R | 1 x 1}.
(1)求集合 B;
(2)求 ( RB) A;
(3)若 B C B,求实数m的取值范围.
18.(12 分)
3
已知偶函数 f (x)的定义域为 ( ,0) (0, ), f ( 2) ,当 x (0, )时,
2
f (x) x m函数 .
x
(1)求实数m的值;
(2)当 x ( ,0)时,求函数 f (x)的解析式;
(3)利用定义判断并证明函数 f (x)在区间 (0, )的单调性.
高一数学试题 第 3 页 共 4 页
19.(12 分)
已知函数 f (x) x2 (m 2)x 2m,m R .
(1)若 f (x) 0对任意的 x R 恒成立,求实数m的取值范围;
(2)若 f (x)在 ( ,3) 上单调递减,求实数m的取值范围;
(3)解关于 x的不等式 f (x) 0 .
20.(12 分)
某科研单位在研发某种合金产品的过程中发现了一种新型合金材料,由大数据分析得到该产品
的性能指标值 y( y值越大产品性能越好)与这种新型合金材料的含量 x(单位:克)的关系:当
0 1 x 8时, y是 x的二次函数;当 x 8时, y ( ) x t.测得的部分数据如下表所示:
2
x 0 2 4 12
y 1 4 4 4
4
(1)求 y关于 x的函数解析式;
(2)求该新型合金材料的含量 x为何值时产品性能达到最佳.
21.(12 分)
已知函数 f (x) 满足 2 f (x) f ( x) 3x 1 31 x .
(1)求 f (x) 的解析式;
(2)若对于任意的 x R ,不等式 f (2x) mf (x) 6 0 恒成立,求实数m的取值范围.
22.(12 分)
若对于任意 x1, x2 R ,使得 x1 x2 W ,都有 f (x1) f (x2 ) W ,则称 f (x)是W 陪伴的.
(1)判断 f (x) 3x 1是否为[0, )陪伴的,并证明;
(2)若 f (x) a x (a 0,a 1)是[0, )陪伴的,求 a的取值范围;
(3)若 f (x)是{2}陪伴的,且是 (0, )陪伴的,求证: f (x)是 (2,4)陪伴的.
高一数学试题 第 4 页 共 4 页2021-2022 学年度第一学期期中学业水平检测高一数学评分标准
一、单项选择题:本题共 8小题,每小题 5分,共 40分。
1—8: D AB B C DAC
二、多项选择题:本题共 4小题,每小题 5分,共 20分。
9.AC; 10.BD; 11.ABD ; 12.BCD;
三、填空题:本题共 4个小题,每小题 5分,共 20分。
6 513. ; 14. 1; 15. ; 16. A {x Q | x π},B {x Q | x π}.
4
四、解答题:本题共 6小题,共 70分。解答应写出文字说明,证明过程或演算步骤。
17.(10分)
1 (1 1 1 1解:(1) ) x 9, ( )x ( ) 2, 2 x 1
3 3 3 3 3
集合 A {x R | 2 x 1} ······································································· 2分
又Q AI B {x R | 1 x 1}
1是方程 x2 2x a 0的根····································································· 3分
( 1)2 2 ( 1) a 0得 a 3 ··································································· 4分
由 x2 2x 3 0得 1 x 3
集合 B {x R | 1 x 3} ······································································· 5分
(2)由(1)得, RB {x | x 1或 x 3}····················································· 6分
( RB)U A {x | x 1或 x 3}·····································································7分
(3)Q BUC B, C B ······································································· 8分
①当m 1 2m,即m 1时,C ,满足题意··········································· 9分
m 1 1
②当m 1 2m,即m 3 1时, Q C B, ,解得0 m
2m 3 2
3
综上,所求实数m的取值范围为m 1或0 m ········································ 10分
2
18.(12分)
解:(1)因为函数 f (x)为偶函数,且 f ( 3 2) ,
2
f (2) 2 m 3所以 ,解得m 1·································································3分
2 2
1
(2)设 x ( ,0),则 x (0, ), f ( x) x ,··································4分
x
因为函数 f (x) 1为偶函数,所以 f (x) f ( x) x
x
所以当 x ( ,0) 1时, f (x) x ····························································· 6分
x
(3)设 x1, x2 (0, )且 x1 x2
高一数学答案 第 1 页 共 4 页
1 1
则 f (x1) f (x2 ) x1 (x2 ) ·······························································7分x1 x2
(x x ) x 1 x2 (x x 1)1 2 (x x ) 1 21 2 ································· 10分x1x2 x1x2
因为 x1, x2 (0, )且 x1 x2
所以 x1 x2 0, x1x2 0, x1x2 1 0
所以 f (x1) f (x2 ) 0, 即 f (x1) f (x2 ) ·····················································11分
所以 f (x)在区间 (0, )上为单调递增函数····················································· 12分
19.(12分)
解:(1)因为 f (x) 0对任意的 x R恒成立,
则判别式 (m 2)2 8m 0 ······································································ 1分
即 m2 4m 4 (m 2)2 0
所以m 2 ·································································································· 3分
(2)因为函数 f (x) x2 (m 2)x 2m的图象为开口向上的抛物线,
m 2
其对称轴为直线 x ··············································································4分
2
由二次函数图象可知, f (x) m 2的单调递减区间为 ( , ) ································· 5分
2
f (x) ( m 2因为 在 ,3)上单调递减,所以 3 ··············································· 6分
2
所以m 4 ·································································································· 7分
(2)由 f (x) x2 (m 2)x 2m 0得: (x m)(x 2) 0 ······························8分
由 (x m)(x 2) 0得 x m或 x 2 ······························································9分
①当m 2时,不等式的解集是{x | x 2} ·······················································10分
②当m 2时,不等式的解集是 ( ,2)U (m, ) ············································11分
③当m 2时,不等式的解集是 ( ,m)U (2, ) ········································· 12分
综上,①当m 2时,不等式的解集是{x | x 2}
②当m 2时,不等式的解集是 ( ,2)U (m, )
③当m 2时,不等式的解集是 ( ,m)U (2, )
20.(12分)
解:(1)当 0 x 8时, y是 x的二次函数,设 y ax2 bx c (a 0),
由 x 0, y 4可得 c 4,········································································ 1分
由 x 2, y 4可得 4a 2b 8①,
由 x 4, y 4可得16a 4b 8②,
由①②得 a 1,b 6,
即 y x2 6x 4 (0 x 8) ······································································· 3分
当 x 8 1时, y ( ) x t,由 x 12, y 1 ,可得 t 10,
2 4
高一数学答案 第 2 页 共 4 页
即 y 1 ( ) x 10 (x 8) ···················································································· 5分
2
y x2 6x 4, (0 x 8),
综上, y 1 ·························································6分y ( ) x 10 , (x 8). 2
(2)1°当0 x 8时, y x2 6x 4 (x 3)2 5,
所以当 x 3时, y取得最大值5 ·····································································8分
2° x 1 8时, y ( ) x 10单调递减,所以当 x 8时, y取得最大值 4 ··················10分
2
综上所述,当该新型合金材料的含量为3时产品性能达到最佳. ··························· 12分
21.(12分)
解:(1)因为 2 f (x) f ( x) 3x 1 31 x ①,
所以 2 f ( x) f (x) 3 x 1 31 x ···································································· 1分
① 2 ②得:3 f (x) 3x 1 31 x ···································································· 4分
所以 f (x) 3x 3 x ····················································································· 5分
(2)因为 f (2x) mf (x) 6 0
所以32x 3 2x m(3x 3 x ) 6 0 ·································································6分
因为3x 3 x 2 3x 3 x 2(当且仅当 x 0时等号成立)
32x 3 2x 6 (3x 3 xm )
2 2 6
所以
3x 3 x 3x x
x x 3 3 3 3x 3 x
即m 3x 3 x 4 x x 对 x R恒成立························································10分3 3
4
因为3x 3 x x x 2 4 4(当且仅当 x 0时等号成立)3 3
所以,所求实数m的取值范围为m 4 ··························································· 12分
22.(12分)
解:(1) f (x) 3x 1是[0, )陪伴的····························································1分
证明:任取 x1, x2 R 且 x1 x2 [0, ),
则 f (x1) f (x2 ) 3(x1 x2 ) [0, )
所以 f (x)是[0, )陪伴的·············································································3分
(2)因为 f (x) a x (a 0,a 1)是[0,1]陪伴的
所以,任取 x1, x2 R 且 x1 x2 [0, ),
则 f (x1) f (x
x1 x2
2 ) a a [0, ) ·······························································4分
a x1
所以 a x1 a x2 a x2 ( x 1) a
x2 (a x1 x2 1) 0 ················································ 5分
a 2
因为 a x2 0,所以 a x1 x2 1 0 ····································································· 6分
又因为 x1 x2 0,所以 a 1 ········································································ 7分
高一数学答案 第 3 页 共 4 页
(3)因为 f (x)是{2}陪伴的,任取 x1, x2 R 且 x1 x2 2
所以 f (x 2) f (x) 2①············································································ 8分
所以 f (x 4) f (x 2) f (x 4) f (x) 2 2
即 f (x 4) f (x) 4②··············································································· 9分
因为 f (x)是 (0, )陪伴的,任取 x1, x2 R 且 x1 x2 0
所以 f (x1) f (x2 ) 0,说明 f (x)在R 上单调递增········································· 10分
再任取 x1, x2 R 且 x1 x2 (2,4),即 x1 x2 2, x1 x2 4
因为 f (x)在R 上单调递增,
所以结合①可得: f (x1) f (x2 ) f (x2 2) f (x2 ) 2
所以结合②可得: f (x1) f (x2 ) f (x2 4) f (x2 ) 4
即 f (x1) f (x2 ) (2,4)
综上知: f (x)是 (2,4)陪伴的······································································· 12分
高一数学答案 第 4 页 共 4 页
同课章节目录