(共17张PPT)
学习目标:
1、使学生掌握合并同类项法则,并能正确地合并同类项.
2、通过探究合并同类项法则的过程,让学生进一步体验探究问题由表及里,由浅及深的方法.
3、初步认识数学与人类生活的密切联系,并积淀学生的创新意识和探究、观察、概括的能力.
重点与难点
重点:运用合并同类项的法则化简多
项式.
难点:合并同类项法则的形成过程及
应用.
问题引入
1、请写出下列各单项式的同类项;
2、请各小组把同组组员写出的所有
同类项相加;
猜一猜“好朋友们”加在一起能得到什么?
3
+
2
=
( )
3a+
2a
= 5a
12
3
=
( )
-
a
a
a
5
b
b
b
9
=
-
12b
3b
9b
合作探究
如图我校操场由足球场和篮球场两部分组成;
(1)我校操场的面积为多少?
(2)如果铺设操场每平米成本y元,则铺设整个
操场共需多少元?
8米
5米
x米
足球场
13x
8x+5x
篮球场
=
8x y +5x y
13x y
=
8xy + 5xy = 13xy
13x
8x + 5x
=
※定义:把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项可以使结果简化.
8xy + 5xy = 13xy
(8+5)x=13x
8x + 5x
=
※定义:把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项可以使结果简化.
合并同类项的法则:
把同类项的系数相加,所得的结果
作为系数,字母和字母的指数保持
不变.
一加两不变!
※定义:把多项式中的同类项合并成一项,叫做合并同类项.
例题:
解:
合并同类项:
问题引入
1、请写出下列各单项式的同类项;
2、请各小组把同组组员写出的所有
同类项相加;
猜一猜“好朋友们”加在一起能得到什么?
既然要合并的是同类项,首先要做什么? 哪几项是同类项? 同类项不在相邻的位置,要怎么处理才便于合并?需要用什么方法进行变形? 没有同类项的项要怎么处理?
解:4a2 + 2a + 3a - 8a2 - 2
- 8a2
= ( ) + ( )
+ 3a
2a
4a2
合并同类项:
找出
结合
合并
找准、找全同类项.
结合同类项,连符号一起搬,没有同类项的照搬,括号之间是加号。
只把系数来相加,字母和字母的指数不变.
4a2 + 2a + 3a - 8a2 - 2
4
- 8
+ 3
2
= ( )a2 + ( ) a -2
=-4a2 + 5a -2
加法交换律加法结合律
- 2
你能总结出合并同类项的步骤吗?
例题:
用不同的记号把同类项标出来!
合并同类项的步骤:
1、找出同类项
用不同的记号标记出各同类项,注意每一项
的符号.
2、把同类项移在一起
用括号将同类项括起来,括号间用加号连接.
3、合并同类项
系数相加,字母及字母的指数保持不变 .
请各小组把刚刚写出的单项式任意选取五
个相加,你能算出答案吗?
问题引入
1、请写出下列各单项式的同类项;
2、请各小组把同组组员写出的所有
同类项相加;
例题:
求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.
如果x=0,如何求值比较简便?
解: 3x2+4x-2x2-x+x2-3x-1
——
——
——
~~~~
~~~~
~~~
=(3-2+1)x2+(4-1-3)x-1
=2 x2-1
当x=-3时,原式=2×(-3)2-1=17
求多项式的值,常常先合并同
类项,再求值,这样比较方便.
合并同 类 项
步骤
法则
(1)系数相加作为
结果的系数.
(2)字母与字母的
指数不变.
(1)找出同类项.
(2)结合同类项.
(3)合并同类项.
作业:教材112页第5、6题.