人教版九年级上册数学第二十二章 二次函数22.3实际问题与二次函数--销售问题训练(word版含答案)

文档属性

名称 人教版九年级上册数学第二十二章 二次函数22.3实际问题与二次函数--销售问题训练(word版含答案)
格式 doc
文件大小 382.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-11-17 10:01:01

图片预览

文档简介

人教版九年级上册数学22.3实际问题与二次函数--销售问题训练
1.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时,月销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
2.某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.
(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;
(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.
①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?
②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?
3.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y件.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)设每月的销售利润为W,请直接写出W与x的函数关系式.
4.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:
销售单价x(元/千克) 55 60 65 70
销售量y(千克) 70 60 50 40
(1)求y(千克)与x(元/千克)之间的函数表达式;
(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?
(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?
5.某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元台),m与x的关系如图所示.
(1)若第x天可以生产这种设备y台,则y与x的函数关系式为______,x的取值范围为______;
(2)第几天时,该企业当天的销售利润最大?最大利润为多少?
(3)求当天销售利润低于10800元的天数.
6.某商场将进货价30元的书包以40元售出,平均每月能售出600个.市场调查发现:这种书包的售价每上涨1元,其销售量就减少10个.
(1)请写出每月销售书包的利润y(元)与每个书包涨价x(元)之间的函数关系;
(2)设某月的利润为10000元.10000元是否为每月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并求出此时书包的定价应为多少元.
(3)请分析售价在什么范围内商家就可获利.
7.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
8.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件)
100
110
120
130

月销量(件)
200
180
160
140

已知该运动服的进价为每件60元,设售价为元.
(1)请用含x的式子表示:①销售该运动服每件的利润是 元;②月销量是 件;(直接写出结果)
(2)设销售该运动服的月利润为元,那么售价为多少时,当月的利润最大,最大利润是多少?
9.某超市经销一种销售成本为每件元的商品.据市场调查分析,如果按每件元销售,一周能售出件;若销售单价每涨元,每周销售量就减少件.设销售单价为元,一周的销售量为件.
求与之间的函数关系式(标明取值范围);
设一周的销售利润为,写出与之间的函数关系式,若要获得最大利润,一周应进货多少件?
10.市“健益”超市购进一批元/千克的绿色食品,如果以元/千克销售,那么每天可售出千克.由销售经验知,每天销售量(千克)与销售单价(元)存在如下图所示的一次函数关系.
试求出与的函数关系式;
设“健益”超市销售该绿色食品每天获得利润为元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
根据市场调查,该绿色食品每天可获利润不超过元,现该超市经理要求每天利润不得低于元,请你帮助该超市确定绿色食品销售单价的范围(直接写出).
11.某商店经营一种小商品,进价是每件40元.据市场调查,销售价是60元时,平均每星期的销售量是300件.而销售价每降价1元,平均每星期的期就多售出30件.
(1)假定每件商品降价x元,商店每星期的销售量是y件,请写出y与x之间的函数关系式(请直接写出结果);
(2)每件小商品销售价是多少元时,商店每星期销售这种小商品的利润吸最大?最大利润是多少?
12.某工厂现有20台机器,每台机器平均每天生产160件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于某种原因,每增加一台机器,每台机器平均每天将少生产4件产品.
(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式及自变量的取值范围;
(2)增加多少台机器,可以使每天的生产总量最大,最大生产总量是多少?
(3)要使生产总量增加300件,则机器增加的台数应该是多少台?
13.某商店购进一批单价为30元的日用商品,如果以单价40元销售,那么每星期可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.设销售单价为x(元)(x>40)时,该商品每星期获得的利润y(元).
(1)求出y与x之间的函数关系式及自变量x的取值范围;
(2)求出销售单价为多少元时,每星期获得的利润最大?最大利润是多少?
14.某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图所示.
(1)图中点P所表示的实际意义是 ;销售单价每提高1元时,销售量相应减少 件;
(2)请直接写出y与x之间的函数表达式: ;自变量x的取值范围为 ;
(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?
15.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.
销售单价(元)
销售量(袋)
(1)请直接写出y与x之间的函数关系式;
(2)如果每天获得160元的利润,销售单价为多少元?
(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
16.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.
(1)求y与x之间的函数关系式(不求自变量的取值范围);
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?
(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?
②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?
17.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=
(1)当8<t≤24时,求P关于t的函数解析式;
(2)设第t个月销售该原料药的月毛利润为w(单位:万元)
①求w关于t的函数解析式;
②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.
18.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
参考答案
1.
解:(1)根据题意得:
y=(30+x-20)(230-10x)=-10x2+130x+2300,
自变量x的取值范围是:0<x≤10且x为正整数;
函数关系式为y=-10x2+130x+2300(0<x≤10且x为正整数);
(2)当y=2520时,得-10x2+130x+2300=2520,
解得x1=2,x2=11(不合题意,舍去),
当x=2时,30+x=32(元),
答:每件玩具的售价定为32元时,月销售利润恰为2520元;
(3)根据题意得:
y=-10x2+130x+2300
=-10(x-6.5)2+2722.5,
∵a=-10<0,
∴当x=6.5时,y有最大值为2722.5,
∵0<x≤10且x为正整数,
∴当x=6时,30+x=36,y=2720(元),
当x=7时,30+x=37,y=2720(元),
答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
2.
试题分析:根据题意列方程组即可得到结论;①由题意列出关于x,y的方程即可;②把函数关系式配方即可得到结果.
试题解析:(1)根据题意得:,解得:;
(2)①由题意得:y=(x-20)【100-5(x-30)】
∴y=﹣5+350x﹣5000,
②∵y=﹣5+350x﹣5000=﹣5+1125,∴当x=35时,y最大=1125,
∴销售单价为35元时,B商品每天的销售利润最大,最大利润是1125元.
考点:二次函数的应用;二元一次方程组的应用
3.
(1)当时,,即.
当时,,即,则
(2)由利润=(售价-成本)×销售量可以列出函数关系式为
4.
解:(1)设y与x之间的函数表达式为(),将表中数据(55,70)、(60,60)代入得:

解得:,
∴y与x之间的函数表达式为;
(2)由题意得:,
整理得,
解得,
答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;
(3)设当天的销售利润为w元,则:

∵﹣2<0,
∴当时,w最大值=800.
答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.
5.
(1)根据题意,得y与x的解析式为:()
(2)设当天的当天的销售利润为w元,则根据题意,得
当1≤x≤6时,
w=(1200-800)(2x+20)=800x+8000,
∵800>0,∴w随x的增大而增大,
∴当x=6时,w最大值=800×6+8000=12800.
当6<x≤12时,
易得m与x的关系式:m=50x+500
w=[1200-(50x+500)]×(2x+20)
=-100x2+400x+14000=-100(x-2)2+14400.
∵此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,
∴当x=7时,w有最大值,为11900元,
∵12800>11900,
∴当x=6时,w最大,且w最大值=12800元,
答:该厂第6天获得的利润最大,最大利润是12800元.
(3)由(2)可得,
1≤x≤6时,
解得:x<3.5
则第1-3天当天利润低于10800元,
当6<x≤12时,
解得x<-4(舍去)或x>8
则第9-12天当天利润低于10800元,
故当天销售利润低于10800元的天数有7天.
6.
解:(1)y= (40-30+x) (600-10x)
= -10x 2 +500x+6000;
(2)y = -10x 2 +500x+6000= -10 (x-25)2 +12250
∵a= -10<0
∴当x=25时,y有最大值,最大值为12250,
∴10000元不是每月的最大利润,
当定价为40+25=65元时,每月的最大利润为12250元.
(3)解方程-10x 2 +500x+6000=0得,x 1=60, x 2= -10
即当涨价60元时和降价10元时利润y的值为0.
由该二次函数的图象性质可知,
当涨价大于60元时以及降价超过10元时利润y的值为负,所以书包售价在大于30元且低于100元时商场就有利润.
7.
(1)设每千克应涨价x元,则(10+x)(500﹣20x)=6 000
解得x=5或x=10,
为了使顾客得到实惠,所以x=5.
(2)设涨价z元时总利润为y,
则y=(10+z)(500﹣20z)
=﹣20z2+300z+5 000
=﹣20(z2﹣15z)+5000
==﹣20(z﹣7.5)2+6125
当z=7.5时,y取得最大值,最大值为6 125.
答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;
(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.
8.
(1)①销售该运动服每件的利润是(x﹣60)元;
②设月销量W与x的关系式为w=kx+b,
由题意得,,
解得,,
∴W=﹣2x+400;
(2)由题意得,y=(x﹣60)(﹣2x+400)
=﹣2x2+520x﹣24000
=﹣2(x﹣130)2+9800,
∴售价为130元时,当月的利润最大,最大利润是9800元.
9.
根据题意得,;
利润,


当时,获得最大利润,一周应进货件.
10.
设,由图象可知,
解之,得
∴(,不写自变量取值范围不扣分).

∵,
∴有最大值.
当时,.
即当销售单价为元/千克时,每天可获得最大利润元.
或.
11.
(1)依题意有:y=(60﹣x﹣40)(300+30x)=﹣30x2+300x+6000;
(2)∵y=﹣30x2+300x+6000=﹣30(x﹣5)2+6750;
∵a=﹣30<0,
∴当x=5时y取最大值,最大值是6750,即降价5元时利润最大,
∴每件小商品销售价是55元时,商店每天销售这种小商品的利润最大,最大利润是6750元.
12.
(1)y=(20+x)(160﹣4x)=﹣4x2+80x+3200,
(2)y=﹣4x2+80x+3200=﹣4(x﹣10)2+3600,
因为﹣4<0,
所以当x=10时,y最大=3600.
即增加10台机器,可以使每天的生产总量最大,最大生产总量是3600件.
(3)生产总量增加300件,
即y=3200+300=3500,
解方程﹣4x2+80x+3200=3500,得x1=5,x2=15,
所以要使生产总量增加300件,则机器增加的台数应该是5台或15台.
13.
(1)根据题意,当销售单价定为x元时,每周销售量为:400﹣20(x﹣40),
则该商品每星期获得的利润:
y=(x﹣30)[400﹣20(x﹣40)],
即y =﹣20x2+1800x﹣36000,
∵其每周销售量400﹣20(x﹣40)≥0且x>40,
∴40<x≤60,
∴y =﹣20x2+1800x﹣36000(40<x≤60);
(2)由(1)知y=﹣20x2+1800x﹣36000,
配方得:y=﹣20(x﹣45)2+4500,
∵﹣20<0,且40<45<60,
∴当x=45时,y最大值=4500.
答:销售单价为45元时,每星期获得的利润最大,最大利润是4500元.
14.
(1)图中点P所表示的实际意义是:当售价定为35元/件时,销售数量为300件;
第一个月的该商品的售价为:20×(1+50%)=30(元),
销售单价每提高1元时,销售量相应减少数量为:(400-300)÷(35-30)=20(件).
故答案为当售价定为35元/件时,销售数量为300件;20.
(2)设y与x之间的函数表达式为y=kx+b,
将点(30,400)、(35,300)代入y=kx+b中,
得:,
解得,
∴y与x之间的函数表达式为y=-20x+1000.
当y=0时,x=50,
∴自变量x的取值范围为30≤x≤50.
故答案为y=-20x+1000;30≤x≤50.
(3)设第二个月的利润为w元,
由已知得:w=(x-20)y=(x-20)(-20x+1000)=-20x2+1400x-20000=-20(x-35)2+4500,
∵-20<0,
∴当x=35时,w取最大值,最大值为4500.
故第二个月的销售单价定为35元时,可获得最大利润,最大利润是4500元.
15.
解:(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120代入,
得,解得,
则y与x之间的函数关系式为y=﹣80x+560;
(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,
整理,得x2﹣10x+24=0,解得x1=4,x2=6,
∵3.5≤x≤5.5,∴x=4,
答:如果每天获得160元的利润,销售单价为4元;
(3)由题意得:w=(x﹣3)(﹣80x+560)﹣80
=﹣80x2+800x﹣1760
=﹣80(x﹣5)2+240,
∵3.5≤x≤5.5,∴当x=5时,w有最大值为240,
故当销售单价定为5元时,每天的利润最大,最大利润是240元.
16.
(1)y=100+10(60-x)=-10x+700.
(2)设每星期利润为W元,
W=(x-30)(-10x+700)=-10(x-50)2+4000.
∴x=50时,W最大值=4000.
∴每件售价定为50元时,每星期的销售利润最大,最大利润4000元.
(3)①由题意:-10(x-50)2+4000=3910
解得:x=53或47,
∴当每件童装售价定为53元或47元时,该店一星期可获得3910元的利润.
②由题意::-10(x-50)2+4000≥3910,
解得:47≤x≤53,
∵y=100+10(60-x)=-10x+700.
170≤y≤230,
∴每星期至少要销售该款童装170件.
17.
详解:(1)设8<t≤24时,P=kt+b,
将A(8,10)、B(24,26)代入,得:

解得:,
∴P=t+2;
(2)①当0<t≤8时,w=(2t+8)×=240;
当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;
当12<t≤24时,w=(-t+44)(t+2)=-t2+42t+88;
②当8<t≤12时,w=2t2+12t+16=2(t+3)2-2,
∴8<t≤12时,w随t的增大而增大,
当2(t+3)2-2=336时,解题t=10或t=-16(舍),
当t=12时,w取得最大值,最大值为448,
此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;
当12<t≤24时,w=-t2+42t+88=-(t-21)2+529,
当t=12时,w取得最小值448,
由-(t-21)2+529=513得t=17或t=25,
∴当12<t≤17时,448<w≤513,
此时P=t+2的最小值为14,最大值为19;
综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.
18.
详解:(1)当x=6时,y1=3,y2=1,
∵y1﹣y2=3﹣1=2,
∴6月份出售这种蔬菜每千克的收益是2元.
(2)设y1=mx+n,y2=a(x﹣6)2+1.
将(3,5)、(6,3)代入y1=mx+n,
,解得:,
∴y1=﹣x+7;
将(3,4)代入y2=a(x﹣6)2+1,
4=a(3﹣6)2+1,解得:a=,
∴y2=(x﹣6)2+1=x2﹣4x+13.
∴y1﹣y2=﹣x+7﹣(x2﹣4x+13)=﹣x2+x﹣6=﹣(x﹣5)2+.
∵﹣<0,
∴当x=5时,y1﹣y2取最大值,最大值为,
即5月份出售这种蔬菜,每千克的收益最大.
(3)当t=4时,y1﹣y2=﹣x2+x﹣6=2.
设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,
根据题意得:2t+(t+2)=22,
解得:t=4,
∴t+2=6.
答:4月份的销售量为4万千克,5月份的销售量为6万千克.
试卷第8页,共8页
试卷第7页,共8页