北师大版八年级数学上册 计算器运用与功能探索课件(共48张PPT)

文档属性

名称 北师大版八年级数学上册 计算器运用与功能探索课件(共48张PPT)
格式 pptx
文件大小 735.7KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2021-11-17 15:26:37

图片预览

文档简介

(共48张PPT)
 
综合与实践
计算器运用与功能探索
学情
分析
目标
分析
过程
设计
教学
设计说明
教学
方法
计算器运用与功能探索
教 材 分 析
“计算器运用与功能实践”是“鲁教版五四学制七年级上册”第四章《实数》的综合与实践.本课安排在“估算平方根和立方根”、“用计算器开方”等章节以后,让学生通过本节课的学习认识到有效运用工具在数学研究过程中的重要作用,培养学生的数学建模思想,发展操作、探究能力,激发创新精神.
学生分析
学生在青岛版小学四年级上《泰山黄金周》中已经对计算器的基本运用进行了学习,本章又经历了相关章节的学习,已经掌握了计算器的基本操作,同时对计算器的功能有着非常高的研究兴趣,在此基础上提出本节的四个问题,使学生在探索计算器与数学的关系,结合所学数学知识,对自身能力、学习方式和运算技巧等方面都有很大的提高.
目 标 分 析
1.教学目标
知识技能
过程与方法
情感态度
2. 教学重、难点
教学重点
教学难点
能借助计算器从事探究活动,并能运用代数运算进行合理的解释,体会通过合情推理探索数学结论,运用演绎推理加以证明的过程.
通过对解决问题过程的反思,进一步提出新问题,获得有价值的数学活动经验,养成独立思考、合作交流、反思质疑的学习习惯.
知识技能
教学目标
过程与方法
在教学过程中,锻炼学生的动手能力,合作意识,逐步形成独立思考,主动探索的习惯.
教学目标
教学目标
情感态度
通过探究活动,让学生认识到数学的应用价值,并提高学生对数学的兴趣,增强学生对计算器的探索研究欲望.
◆培养学生的探索、研究的欲望,熟练掌握计算器的基本功能,并能探索性的使用计算器.
教学重点
教学难点
探索计算器的特殊功能,运用数学技巧解决实际的数学问题,并能用代数方法论证数学现象.
教学重、难点
教 学 方 法
  教法:类比、探究式教学方法
教学过程中渗透类比的数学思想,形成新的知识结构体系;设置探究式教学,让学生经历探索的过程,从而达到对知识的深刻理解与灵活应用.
  学法:自主、合作、探究的学习方式
在教学活动中,既要提高学生独立解决问题的能力,又要培养团结协作精神,拓展学生探究问题的深度与广度,以促进学生发展为目的.
本节内容共分两个课时.
第一课时:问题一、问题二的研究,
第二课时:问题三、问题四的研究.
过 程 设 计
一.预习
提前一天布置学生预习,对问题一、问题二进行探索,预习方式以小组为单位,回家查阅相关资料,给学生设计适当的问题,并由学生对问题进行深入探索,提出自己的问题.
第一课时:
问题一:任选一个三位数(要求:百位数字比个位数字至少大2),颠倒数位顺序,用其中较大的那个数减去较小的数,再将所得差的各位数字颠倒数位并加上差本身,你得到的结果是多少?再换几个数试试,你发现了什么?
任选一个四位数,仿照上面的规则,你会得到什么结果呢?
如果任选一个五位数呢?……
设计的问题:
1、任取两位数的时候,运算结果是多少?三位数、四位数、五位数呢?
2、试一试将运算过程用字母进行代数论证.
3、从此题中找点新奇问题吧.
问题二:任选一个正数,执行下列操作:加1,再取倒数,将所得到的结果不断执行上述操作……你发现了什么?
如果改变操作规则,如“加2再取倒数”,“平方加1后再开方、取倒数”……你还会发现类似的规律吗?
设计的问题:
1、请你选一个运算规则,找出最后的结果,小数点后三位稳定即可.
2、试一试将运算过程用字母进行代数论证.
3、请自主设计一个运算规则,观察其结果的特点.
二.学习阶段
游戏规则
设计游戏模式,由教师宣读游戏规则:
1、分六个小组.由奇数组作为挑战组,偶数组作为应战组.分成三个对战小组.
2、应战组做好准备,由挑战组设计一个问题给应战组,由应战组的同学做出回应,若回答正确,应战组加1分,若回答不正确,由挑战组揭示答案,答案合适,挑战组得分.一个问题回答完成后,换边再战.
3、小组内安排专门同学进行记录,记录内容为:
对方的数 结果 本方的数 结果 出战/应战人 得分
4、三轮结束后,由教师选择得分最高的三个小组选派代表上讲台展示战斗情况.
课堂组织过程
1、课堂上先由本小组同学研究一下出题的方式以及应对的方案.
2、2分钟以后对战模式开启,此时,教师应尽量不参与对战小组的战斗,而是从各个小组的对战中寻找新颖、深入的问题,并适当做好记录.
问题一中可能出现的问题:
1.两位数的情况:
①十位数字与个位数字相等的情况:
如:44,逆序后相减得0.
②十位数字与个位数字不相等的情况:
如:45,
逆序:54
较大的数-较小的数:54-45=9(此处的9实际应为09)
逆序:90
加差:90+09=99
总结:在十位数字与个位数字不相等时,经过此番运算,最后结果均为99.
2、三位数的情况:设此三位数为
如:232
逆序:232
相减:0
即:此时结果为0.
(1)当百位数字与个位数字相等(即a=c)时:
(2)百位数字比个位数字大1(即a=c+1)
例如:352
1、逆序:253
2、较大数-较小数:352-253=99 (此时99应为099)
3、逆序:990
4、加差:990+099=1089
即:此时结果为1089.
如451:
运算顺序如下:
①逆序:154
②较大数-较小数:451-154=297
③逆序:792
④加差:792+297=1089
即:循环完毕结果稳定得1089.
(3)百位数字比个位数字至少大2(即a≥c+2)
三位数的验证问题:
任给三位数 ,其中a≥c+2,颠倒数位并相减:
因为a>c,若(a-1-c)不为0,需要a≥c+2,十位数化简后得9,现在把差各位颠倒后相加:
3、四位数字的情况:设此四位数字为:
①:当a=d,b=c时
如:3443
逆序:3443
相减:0
即:此时结果为0.
②当a=d且b>c时
如:3543,
逆序:3453
较大数-较小数:3543-3453=90(此时90应为0090)
逆序:0900
加差:0900+0090=0990
即此时结果为990.
代数式验证如下:
③当a>d且b=c时,
如:5443,
逆序:3445
较大数-较小数:5443-3445=1998
逆序:8991
加差:10989
即:此时结果为10989.
④a>d且b>c,
如:5432,
逆序:2345
较大数-较小数:5432-2345=3087
逆序:7803
加差:7803+3087=10890
即:此时结果为10890.
⑤当a>d且b如:5473,
逆序:3745
较大数-较小数:5473-3745=1728
逆序:8271
加差:8271+1728=9999
即:此时结果为9999.
当中间两数不变而只交换两边的两个数时:
如:3567
逆序:7563
较大数-较小数:7563-3567=3996
逆序:6993
加差:6993+3996=10989,
即此时运算结果稳定为10989.
分析此时情况,当将中间两数看为一数时,实际为三位数的情况.
当a≥d+2时有:
4、五位数字的情况:设此五位数字为:
①当a=e且b=d时,此时结果为0.
②当a=e且b>d时,此时结果为10890.
③当a>e且b=d时,此时结果为109989.
④当a>e且b>d时,此时结果为109890.
⑤当a>e且b六位数字的情况比较多,不再研究.
代数式验证如下:
当中间三数不变而只交换两边的两个数时:
如:35467
逆序:75463
较大数-较小数:75463-35467=39996
逆序:69993
加差:69993+39996=109989,
即此时运算结果稳定为109989.
分析此时情况,当将中间三数看为一数时,实际也为三位数的情况.
当a≥e+2时有:
结论:
在一个多位数中,如果中间数位保持不变,只交换靠外边的两位,那么其结果的推理方式类似三位数的推理,当满足三位数的基本要求时,我们会得到如下的结果:
从上表中我们可以发现x+y=9;在差及和中9的个数随着数位的增加而增加,且我们可以预言它们出现的次数;在和之间出现两个有趣的关系,一个把99作为因数,另一个把9作为其因数.
问题一的最终目标
问题一的主要运算方式是运用计算器的方便、快捷对重复运算的技巧和方法进行锻炼,此题的主要目标是通过这种运算将目标归结到用代数式来验证这种运算规律的方法上来,让学生由浅入深,理解数学的类比、推理及归纳思想.
问题二的组织形式
问题二可以用江苏卫视强档节目“最强大脑”中智障儿周伟的故事进行引入,任选一种运算规则,然后由学生提一个数,教师迅速得出结论引出此问题的学习.
问题二依然采用问题一的游戏规则,对战模式仍然不变,课堂组织形式也以教师观察,并记录有特点,有价值的问题为主.
问题二可能出现的问题
1、对于问题中提到的简单运算进行验证.
如:任选一个正数,加1,取倒数,将所得到的结果不断执行上述操作.可取3,有限次运算后结果约为0.618;实际上取-3,结果也是约为0.618,但是取-1或-2均不可行(导致分母为0).由此可以得到,不断执行操作,数值基本稳定,稳定值约为0.618.这实际上就是寻找一个数,使其等于此数加1后的倒数.
用代数式表示可得方程:
2、任选一个正数,加2,取倒数的验证:
如取1,经过有限次运算后,稳定值约为0.414.
用代数式表示为:
3、平方加1后再开平方、取倒数的验证:
如取1,经过有限次运算后,稳定值约为0.786.
用代数式表示为:
由于此时学生未学分式方程和一元二次方程,因此这样的方程不要求学生解答,只要能列出这样的验证方程式,观察其特点即可.
学生提出的问题:
1、结果发散的运算规则:
如加1后再平方等.
2、结果收敛的运算规则:
如加1后平方再取倒数等.
这样的结果,学生在前面的问题掌握的基础上能自己总结出来,因此教师不用多加引导,可让学生自主完成.
问题二的终极目标:
问题二中提出的问题需要学生自主进行验证,找出其中的规律,并能根据所给例子的特点总结出新的运算规则.
问题二的最终目标是让学生通过运用计算器进行验证的过程理解极限的思想,掌握迭代运算的数学方法,并能根据所给规则列出适当的方程式(即将验证过程转化成代数式表示的数学思路).
课程设计与第一课时一致,预习阶段仍以小组预习为主,设计适当的问题,上课方式仍以对战模式为主,教师仍以巡视、观察学生对战中的新奇思路为主.
第二课时 问题三、问题四的学习
问题三:
设计的问题:
1、请分别找出这些分数的循环节.
2、自己设计几个数求其循环节.
借助你的计算器分别得出 的循环节.
1/13
用八位计算器计算1/13,显示的数字为1/13=0.0769231,一共显示了八个数字.
0.0769231×13=1.0000003(显示八位)
这表明上面的0.0769231最后的1位为四舍五入进位所得.
则再用0.0769230×13=0.9999990(显示八位)
1-0.9999990=0.0000010(只显示了7位,最后一个0为补上)
表明最后的余数为10,则用10/13=0.7692308,将这个数字小数点后面的数字全部接到0.0769230后面,得到0.07692307692308,
观察0.07692307692308,发现一个完整的循环节为076923,而最后一个数字8为四舍五入进位所得.
问题三可能出现的问题:
0.034482758620689655172413793103448
先用8位计算器计算1/29得到
1/29=0.0344828(显示8个数字),而0.0344828×29=1.0000012>1,表明最后一个数字为四舍五入进位后所得,则用四舍五入法得到:
1/29=0.0344827,0.0344827×29=0.9999983
1-0.9999983=0.0000017,余数为17,则用17/29=0.5862069
0.5862069×29=17.000000(取8个数字)
此时无法辨别这个数字是进位所得还是舍去所得,姑且认为是进位所得,则用舍去法得到17/29=0.5862068,将小数点后面的数字接到0.0344827后面得到0.03448275862068
0.5862068×29=16.999997
17-16.999997=0.0000030(最后一个0为补充,因计算器显示8个数字)余数为30,此时余数已经大于29,表明用现有计算器已经无法辨别真正的余数,因此改用十二位计算器重新计算.
有些数字的循环节不能用8位计算器求出,如1/29.
改用12位计算器计算1/29得到
1/29=0.03448275862(显示12个数字),而0.03448275862×29=0.99999999998<1,表明最后一个数字不是四舍五入进位后所得
1-0.999999999998=0.0000000000002,余数为2,则计算2/29=0.06896551724(显示12位数)
0.06896551724×29=1.99999999996<2,表明最后一个数字不是四舍五入进位所得,因此将0.06896551724小数点后面的数字接到1/29=0.03448275862后面,得到:0.0344827586206896551724
2-1.99999999996=0.00000000004,余数是4,则计算4/29
4/29=0.13793103448(显示12位数字)
0.13793103448×29=3.99999999992<4,表明最后一个数字不是四舍五入进位所得,因此将0.13793103448小数点后面的数字接到前面,得到:
0.034482758620689655172413793103448,
4-3.99999999992=0.000000000008,余数为8,计算8/29
8/29=0.27586206897(显示12位数字)
0.27586206897×29=8.00000000013>8,表明0.27586206897最后一个数字为四舍五入进位所得,用舍去法得到8/29=0.27586206898,然后将小数点后面的数字接到前面得到:
0.03448275862068965517241379310344827586206898
观察这个数字,发现0.0344827586206896551724137931为一个完整的循环节.
方法总结:
分子除以分母,显示的内容记下来乘以分母,结果与分子进行比较,小于分子则为四舍五入“舍”之所得,大于分子则为“入”之所得,最后一位减1,乘以分母,用分子减这个结果,最后显示不为零的结果为除数,继续除以分母,所得结果继续进行判断,如此循环,直到四舍五入“舍”之所得出现循环位数为止.
问题四:
如果计算器上的某个数字键(比如3)坏了,怎样计算含有这个数字的算式(如2+3,34-12,3×49,325÷413,…)呢?
如果某个运算符按键坏了呢?
设计的问题:
1、某个数字键坏了的时候你的解决方法是什么?
2、某个运算符(如加、减、乘、除、乘方、开方)坏了的时候,怎么解决?
3、你还能想到其他的按键坏了的解决方法吗?
问题四可能出现的问题:
1.数字键坏了的解决方法
可以由简单的数学运算代替这个数字,如325÷413这样的运算就可以替换为(225+100)÷(412+1)来完成.
2.运算符坏了的解决方法
加可以用减负代替;
减可以用加负代替;
乘可以用除倒数代替;
除可以用乘倒数代替;
乘方可以用乘方定义及乘方的运算法则代替;
开方可以用第二功能键代替.
3.第二功能键坏了的情况,如求 ,可以用 代替.
……
教学设计说明
教学过程不仅是知识传授的过程,更是学生掌握良好学习方法,锻炼思维能力,培养创新能力,感受数学思想的过程.本课就教学过程作以下几点说明:
1、知识结构安排:本课以“问题情境 获取新知 应用与拓展”的模式展开,符合学生的认知规律.
2.教学方法与设置:
教学过程中采用数学建模的学习方式,运用类比、探究式教学,以学生自主探索为主,教师适当引导为辅.引导学生采用自主、合作、探究的学习方式,符合新课标确立的学习方式的要求.本课以两个问题为研究对象,让学生认识到计算器是运算的辅助工具,而数学则是博大精深的知识海洋,让学生掌握新的数学思想,把握数学运算的多样性,引导学生主动探索,合作交流并动手实践,培养团结协作精神和创新意识,形成灵活开放与生成发展的课堂教学,营造出平等、轻松、活泼的教学氛围.
3.教学反馈与评价:
本课将从学生回答问题,展示情况等方面反馈学生对知识的理解、运用,教师根据反馈信息适时点拨;同时从新课标评价理念出发,抓住学生语言、思想、动手能力方面的亮点给予表扬,不足的方面给予帮助、鼓励,形成发展性评价,提高学生学数学,用数学的信心.