(共20张PPT)
第二十七章 相似
1. 理解平面直角坐标系中,位似图形对应
点的坐标之间的联系.
2. 能够熟练准确地利用坐标变化将一个图
形放大与缩小.
如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形, 这个点叫做位似中心, 这时的相似比又称为位似比.
1.什么叫位似图形
2.位似图形的性质
位似图形上的任意一对对应点到位似中心的距离之比等于位似比
3.利用位似可以把一个图形放大或缩小
D
E
F
A
O
B
C
如何把三角形ABC放大为原来的2倍
D
E
F
A
.O
B
C
对应点连线都交于___________.
对应线段_____________________.
位似中心
平行或在一条直线上
你能利用平面直角坐标之间的关系来表示
两个位似图形?
B'
A'
x
y
B
A
o
在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小.
(2,1)
观察对应点之间的坐标的变化,你有什么发现
(2,0)
B'
A'
x
y
B
A
o
在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小.
A′(2,1),B′(2,0)
A〞
B〞
A〞(-2,-1),B〞(-2,0)
在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
观察对应点之间的坐标的变化,你有什么发现
2
4
6
8
2
4
6
8
-2
-4
-6
-8
-2
-4
-6
-8
O
9
10
11
12
-9
-10
-12
探究
如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?
A
B
C
位似变换后A,B,C的对应点为
A '( , ),B ' ( , ),C ' ( , );
A" ( , ),B" ( , ),C" ( , ).
4
6
4
2
12
4
-4
-6
-4
-2
-4
-12
A'
B'
C'
A"
B"
C"
在平面直角坐标系中,如果位似变换是以原点为位似中心,
相似比为k,那么位似图形对应点的坐标的比等于k或-k.
结论3:在平面直角坐标系中, 以原点O为位似中心,位似比为k,若原图形上点A的坐标为(x,y),那么位似图形对应点A’的坐标为(kx,ky)或(-kx,-ky)
【例】在平面直角坐标系中, 四边形ABCD的四个顶点的
坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它
的一个以原点O为位似中心,相似比为 的位似图形.
【例题】
x
y
o
A′( -3,3 ), B′( -4,1 ), C′( -2,0 ), D′( -1,2 )
B
A
C
D
A′
B′
C′
D′
你还有其他办法吗 试试看.
课堂练习
1. 如图表示△AOB和把它缩小后得到的△COD,求它们的相似比.
2
4
6
8
2
4
6
8
-2
-4
-6
-8
-2
-4
-6
-8
O
A
B
C
D
点D的横坐标为2
点B的横坐标为5
相似比为
2
4
6
8
2
4
6
8
-2
-4
-6
-8
-2
-4
-6
-8
O
9
10
11
12
-9
-10
-12
2. 如图,△ABC三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍.
A
B
C
解:
A'( , ),B ' ( , ),C ' ( , ),
4
- 4
- 10
8
-4
10
A" ( , ),B" ( , ),C" ( , ),
4
- 4
- 8
10
-10
4
A'
B '
C '
A"
B"
C"
在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2,画它的位似图形.
A′( 4,6 ), B′( 4,2 ), C′( 12,4 )
放大后对应点的坐标分别是多少
A'
x
y
o
B
A
C
B'
A'
C'
还有其他办法吗
2
4
6
12
1
3
6
2
4
在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1), C(6,2),以原点O为位似中心,相似比为2,将△ABC放大.
A〞( -4 ,-6 ), B〞( -4 ,-2 ), C〞( -12 ,-4 )
放大后对应点的坐标分别是多少
x
y
o
B
A
C
B〞
A〞
C〞
达标检测 反思目标
1.将平面直角坐标系中某个图案的各点坐标作
如下变化,其中属于位似变换的是( )
A.将各点的纵坐标乘以2,横坐标不变
B.将各点的横坐标除以2,纵坐标不变
C.将各点的横坐标、纵坐标都乘以2
D.将各点的纵坐标减去2,横坐标加上2
C
达标检测 反思目标
2. 已知△ABC三个顶点的坐标分别为(1,2),(-2
,3),(-1,0),把它们的横坐标和纵坐标分别
变成原来的2倍,得到点A′,B′,C′.下列说法
正确的是( )
A.△A′B′C′与△ABC是位似图形,
位似中心是点(1,0)
B.△A′B′C′与△ABC是位似图形,
位似中心是点(0,0)
C.△A′B′C′与△ABC是相似图形,
但不是位似图形
D.△A′B′C′与△ABC不是相似图形
B
3.如图所示,某学习小组在讨论 “变化的鱼”时,知道大鱼与小鱼是位似图形,则小鱼上的点(a,b)对应大鱼上的点( )
A.(-2a,-2b) B.(-a,-2b)
C.(-2b,-2a) D.(-2a,-b)
达标检测 反思目标
A
1. 位似图形
2.位似图形的性质
3.利用位似的特殊性质可以把一个图形放大或缩小
小结
4.有关的三个结论
结论1:位似图形是相似图形的特殊情形
结论3:结论3:在平面直角坐标系中, 以原点O为位似中心,位似比为k,若原图形上点A的坐标为(x,y),那么位似图形对应点A’的坐标为(kx,ky)或(-kx,-ky)
结论2:位似中心的位置由两个图形的位置决定,可能在两个 图形的同侧,异侧,图形的内部,边上,或顶点上
Thank you!