山东省青岛市胶州市2022届高三上学期第一学段模块检测(期中考试)数学试题(PDF版含答案)

文档属性

名称 山东省青岛市胶州市2022届高三上学期第一学段模块检测(期中考试)数学试题(PDF版含答案)
格式 zip
文件大小 7.5MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2021-11-17 16:13:38

文档简介

2021—2022学年度第一学期第一学段模块检测
高三数学试题 2021.11
本试卷共页,22 题.全卷满分 150 分.考试用时 120 分钟.
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将
条形码粘贴在答题卡指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡
上。写在本试卷上无效。
3.考试结束后,请将答题卡上交。
一、单项选择题:本大题共 8 小题.每小题 5 分,共 40 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.设集合M {y | y 4 2 x},N {x | y ln(1 x)},则M ( RN)
A.[1, 2] B.[1, 2) C. ( ,1) D. (1, 2]
2.已知 a b,a 0,b 0,c R ,下列不等关系正确的是
A.a2 b2 1 1B. C. a c b c D.ac bc
a b
3.方程 2x 3x 4 0 的实数根所在的区间为
1
A. ( ,1) B. ( 1,0) C. (0, 1) D. (1, 4)
2 2 3

4.已知 a (2, 4),b (m,1),则“m 2”是“ a与b的夹角为钝角”的
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
ln( x), x 0
5.已知函数 f (x) x ,若关于 x的方程m f (x) 0有两个不同的实数根,
e , x 0
则实数m的取值范围为
A. (0, ) B. ( ,0] (1, ) C. ( ,0] D. (0,1]
高三数学试题 第 1页(共 6页)
6.已知 l,m是空间中两条不同的直线, , 是空间中两个不同的平面,下列说法正确的是
A.若 l , m // l , m ,则 B.若 // , l // ,则 l //
C.若 l m , l , // ,则m // D.若 , l // ,则 l
7.已知角 的顶点在坐标原点,始边与 x轴非负半轴重合,终边上有一点
M (tan 3π ,2 3 cos 7π) 1 cos 2 ,则 sin 2 的值为
4 6 2
1 7 7 21 1
A. 或 B. C. D.
2 10 10 10 2
8.如图,在四棱锥P ABCD中,底面 ABCD是边长为 2的正方形,侧面 PAB为等边三
角形,平面PAB 平面 ABCD,M 为 PD上一点,N 为 BC上一点,直线 NM 平
面 PAD,则 PND的面积为
P
A. 2 M
D
B. 3 A
C. 6 B N C
D.3
二、多项选择题:本大题共 4 小题.每小题 5 分,共 20 分.在每小题给出的四个选项中,
有多项符合题目要求.全部选对的得 5 分,选对但不全的得 2 分,有选错的得 0 分.
9.已知等差数列{an}的前 n项和为 Sn( n N
*),公差 d 0,S11 110,a7是 a3与 a9
的等比中项,则下列选项正确的是
A.a12 a3 a9 20 B. d 2
C.当 n 10 或n 11时, Sn取得最大值 D.当 Sn 0时, n的最大值为 21
高三数学试题 第 2页(共 6页)
10.将函数 f (x) sin(2x ) ( π π π )的图象向左平移 个单位长度后得到函数
3
g(x) sin(2x π )的图象,则下列说法正确的是
3
πA.
3
B.函数 f (x) 的图象关于点 (
π ,0) 成中心对称
3
C.函数 f (x) 的最小正周期为 π
f (x) π 5πD.函数 的一个单调递增区间为[ , ]
12 12
11.已知 ABCD A1B1C1D1 为正四棱柱,底面边长为 2,高为 4,则下列说法正确的是
π
A.异面直线 AD1 与 A1C1所成角为 3
B.三棱锥 A A1B1D1 的外接球的表面积为 24π
C.平面 AB1D1 // 平面 BDC1
B 4D. 1到平面 A1BC1的距离为 3
12.设正实数 a,b满足 a b 4 ,则
ab 2 1 1 2A. 有最大值 B. 有最小值
a 2b a 3
C. a2 b2 有最小值 4 D. a b 有最大值 2 2
三、填空题:本大题共 4 小题,每小题 5 分,共 20 分.

13.已知 | a | 2,| b | 1, | a b | 3 ,则 | a b | _________ .
14.若 2m 3n t,且 2m 3n mn 0,则 t .
15.已知 f (x) 是定义域为 R 的奇函数, y f (x 1) 为偶函数,当 0 x 1 时,
f (x) x ,若 a f (2019),b f (2021),c f (2022) ,则 a,b,c的大小关系是

16.已知 S 2n是数列{an}的前 n项和, Sn 14n n ,则 an ________ ;
若Tn | a1 | | a2 | | a3 | ... | an | ,则T20 =__________ .
高三数学试题 第 3页(共 6页)
四、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
17.(本题满分 10 分)
如图,某圆形海域上有四个小岛,小岛 A与小岛B相距为5nmile,小岛 A与小岛C
相距为3 5 nmile,小岛 B与小岛C相距为 2 nmile, CAD为钝角,且
sin CAD 2 5 . D
5
(1)求小岛 A、 B、C围成的三角形的面积;
(2)求小岛 A与小岛D之间的距离. C
A
B
18.(本题满分 12 分)
如图,三棱柱 ABC A1B1C1的所有棱长都是 2, AA1 平面 ABC,M 为 AB中点,
点N 为CC1的中点.
C N C
(1)求证:直线MN // 平面 A 11BC1;
(2)求直线MN 到平面 A1BC1的距离.
B
B 1
M
A A1
高三数学试题 第 4页(共 6页)
19.(本题满分 12 分)
已知 Sn为数列{a }
1
n 的前 n项和, a1 2, 7Sn 2 an 1,bn ,log2 an.log2 an 1
Tn为数列{bn}的前 n项和.
(1)求{an}通项公式;
(2)若m 2022T 对所有 n N*n 恒成立,求满足条件的最小整数m值.
20.(本题满分 12 分)

在“① 2a cosB c;②m (a,c b),n (c b,a b) ,m // n”这两个条件中任选
一个,补充在下面问题中,并进行求解.
问题:在 ABC中,a,b,c分别是三内角 A,B,C的对边,已知b 4 ,D是 AB边上

的点,且 AD 3DB,sin Asin B(2 cosC) 1sin 2 C 1 ,若____________,求CD的
2 2 4
长度.
注:如果选择多个条件分别进行解答,按第一个解答进行计分.
高三数学试题 第 5页(共 6页)
21.(本题满分 12 分)
四棱锥 S ABCD的底面 ABCD为直角梯形, AB 2BC 2CD 4, AB BC,
AB //CD, SA SD,且平面 SAD 平面 ABCD,M 为 AB中点.
(1)求证:CM SM ;
SB SAD π(2)若直线 与平面 所成角为 ,求平面 SAD与平面 SBC夹角的余弦值.
4
S
D C
A M B
22.(本题满分 12 分)
ln x ax
已知函数 f (x) , a R .
x
(1)若 a 0,求 f (x) 的最大值;
(2)若0 a 1,求证: f (x) 有且只有一个零点;
(3)设0 m n且mn nm ,求证:m n 2e.
高三数学试题 第 6页(共 6页)2021—2022学年度第一学期第一学段模块检测
高三数学答案及评分标准
一、单项选择题:本大题共 8小题.每小题 5分,共 40分.
B CAC D A BC
二、多项选择题:本大题共 4小题.每小题 5分,共 20分.
9.BC; 10.ACD; 11.BCD; 12.AD.
三、填空题:本大题共 4小题,每小题 5分,共 20分.
13. 7 ; 14.72; 15.a c b; 16.15 2n; 218 .
四、解答题:本大题共 6小题,共 70分,解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分 10分)
解:(1)在 ABC中,由余弦定理得,
cos ABC BA
2 BC 2 AC 2 52 22 (3 5)
2
4······························· 2分
2BA BC 2 5 2 5
sin ABC 3············································································所以 3分
5
1
所以 S BA BC sin ABC
1
5 3 2 3
ABC 2 2 5
所以小岛 A、B、C围成的三角形的面积为 3 nmile2····································································5分
(2)因为 A, B, C, D四点共圆,所以角 ABC与角 ADC互补,
sin ADC 3 cos ADC 4······················································所以 , 6分
5 5
sin 2 5 CAD 2
5
因为 ,且 CAD为钝角,所以cos CAD 1 ( 5) 2
5 5 5
所以
sin ACD sin( ADC CAD) sin ADC cos CAD cos ADC sin C AD
3
( 5 4 2 5 5·············································) 8分
5 5 5 5 5
ACD AD AC在 中,由正弦定理得:
sin ACD sin ADC
高三数学答案 第 1页(共 7页)
5
AD AC sin ACD
3 5
所以 5 5
sin ADC 3
5
所以小岛 A与小岛D之间的距离为5 nmile···············································10分
18.(本小题满分 12分)
证明:(1)取 A1B1中点D,连接MD交 A1B于 E,连接C1E ,
在三棱柱中, M为 AB中点, z
MD // AA 1, ME AA ·······················2分
1 2 1 N
点 N CC C为 1的中点
C 1
NC // AA 1且 NC AA
1 1 1 2 1
NC1 // ME且 NC1 ME·····························3分 B1
四边形 MNC B1E为平行四边形 M
MN // C1E ········································· 4分 E D yA A
又MN 平面 A1BC
1
1,C1E 平面 A1BC1 x
MN //平面 A1BC1······················································· 5分
(2)由(1)得,点M到平面 A1BC1的距离即为直线MN到平面 A1BC1的距离
连接MC,则MC AB
AA1 平面 ABC, MD // AA1
MD 平面 ABC, MA, MD, MC两两垂直,
以 M为原点, MA, MD, MC所在直线分别为 x轴、 y轴、 z轴,
建立如图所示的空间直角坐标系······································································ 6分
则 A1 (1, 2, 0), B( 1, 0, 0),C1 (0, 2, 3)

BA1 (2, 2, 0), BC1 (1, 2, 3 ),

设平面 A1BC1的一个法向量为 n (x, y, z),
2x 2y 0
n B A

1 0 即
n BC1 0 x 2y 3 3z 0 3
取 y 1,则 x 1,z , (1, 1, ),····················································9分
n
3 3
又 MB ( 1, 0, 0) | MB n |,所以点 M到平面 A BC的距离为 21
1 1
| n | 7
即直线MN ABC 21···················································到平面 的距离为 12分
1 1 7
高三数学答案 第 2页(共 7页)
19.(本小题满分12分)
解:(1)由题意7Sn 2 an 1
当 n 2 时, 7Sn 1 2 an
两式相减得:7an an 1 an····························································································································································· 1分
即: an 1 8an( n 2)
所以n 2时,{an}为等比数列·······································································2分
又因为 n 1 时, a2 7S1 2 7 2 2 16
a
所以 2 8····················································································· 3分
a1
所以,对所有 n N*,{a }是以 2为首项,8为公比的等比数列···························n 4分
所以 a 2 8n 1 23n 2··································································································································n 5分
1 1
(2)由题知: bn log a .log a log 23n 2 log 23n 1
2 n 2 n 1 2 2
1 ······································6分
(3n 2)(3n 1)
1
1 ( 1 )······························ 8分
3 3n 2 3n 1
1 1 1 1 1 1 1 1
所以T b b ... b (1 ) (1 ) ··· 10分
n 1 2 n 3 4 4 7 3n 2 3n 1 3 3n 1
所以2022T 2022 1(1 1 ) 674(1 1 ) 674····························· 11分
n 3 3n 1 3n 1
所以满足m 2022Tn恒成立的最小m值为 674.············································· 12分
20.(本小题满分 12分)
解:若选择条件①
由2a cosB c,根据正弦定理得 2sin AcosB sinC·············································· 1分
所以 2 sin Acos B sin( A B) sin Acos B cos Asin C
即 sin AcosB cos AsinC 0,也即 sin(A B) 0·····································2分
因为 π A B π,所以 A B(1)式························································ 3分
1 2 C 1
又因为sin Asin B(2 cosC) sin
2 2 4
即 sin Asin B[2 (1 2sin 2 C)] 1sin 2 C 1 sin Asin B 1················· ,所以 5分
2 2 2 4 4
sin A sin B sin A sin B 1·····································又由(1)式, ,所以 6分
2
A B π ,C 2π······································································所以 7分
6 3
高三数学答案 第 3页(共 7页)
所以b π a 4, AB 2CAcos 4 3 ··························································8分
3 6
,所以 AD 3 3,DB ·········································· 9分因为 AD 3DB AB 3
4
在 ACD中,
CD2 AC 2 AD2 2AC AD cos π 42 (3 3)2 2 4 3 3 3 7·········· 11分
6 2
所以CD 7·················································································12分
若选择条件②

因为 m (a, c b), n (c b, a b),且 m // n
所以 a(a b) (c b)(c b)
即 a2 b2 c2 ab··································································································1分
a2 b2 c2 1
所以 cosC 2分
2ab 2
0 2π C π,所以C (1)式········································································ 3分
3
又因为sin Asin B(2 cosC) 1 sin 2 C 1
2 2 4
即 sin Asin B[2 (1 2sin 2 C)] 1sin 2 C 1
2 2 2 4
1
所以sin Asin B (2)式············································································· 4分
4
C 2π , B π A···································································································· 5分
3 3
sin Asin( π A) 1·····································································所以 6分
3 4
π π 1
所以 sin A(sin cos A cos sin A) 3 3 4
3
所以 sin Acos A 1 sin 2 A 1 3 ,也即 sin 2A 1 cos 2A 1
2 2 4 4 4 4
3
所以 sin 2A 1 cos2A 1
2 2
sin(2A π即 ) 1············································································· 7分
6
高三数学答案 第 4页(共 7页)
π π 5π
因为 2A
6 6 6
2A π π A π ,B π·······················································所以 ,所以 8分
6 2 6 6
所以b a 4 π, AB 2CA cos 4 3
6
AD 3DB,所以 AD 3 AB 3 3,DB 3 ················································ 9分
4
在 ACD中,
CD2 AC 2 AD2 2AC .AD cos π 3 42 (3 3)2 2 4 3 3 7··········· 11分
6 2
所以CD 7·················································································12分
21.(本小题满分12分)
解:(1)证明:取 AD中点 H,连接 SH , MH , MD
因为 SA SD,所以 SH AD··················································································1分
因为平面 SAD 平面 ABCD
z
所以 SH 平面 ABCD ··········································2分
CM 平面 ABCD S
所以 SH CM·····························································3分
因为 M为 AB的中点
所以MA MD 1,所以MH AD ······················ 4分 DH C
因为 AM //CD, AM CD 1, A B
x M y
所以四边形 AMCD为平行四边形,所以CM // AD
所以MH CM········································································································· 5分
因为 SH HM H,所以CM 平面 SHM
所以CM SM··········································································································6分
(2)连结 BD,由题四边形 MBCD为平行四边形, AB BC, BC CD
所以四边形 MBCD为正方形,所以 BD CM
因为 AD // CM,所以 BD AD
因为平面 SAD 平面 ABCD,所以 BD 平面 SAD
所以 BSD π即为 SB与平面 SAD所成角,所以 BSD ································· 7分
4
BD 2 2 ,所以 BD 2 2 ,所以 SAD为等边三角形,所以 SH 68分
以 H为原点,分别以 HA, HM , HS所在直线为 x轴、 y轴、 z轴,
高三数学答案 第 5页(共 7页)
建立空间直角坐标系如图,
则H (0,0,0), S (0,0, 6) ,M (0, 2, 0),B(
2, 2 2, 0),C( 2 2, 2,0)
HM 为平面 SAD的法向量,HM (0, 2, 0),················································9分

又因为 BC ( 2, 2, 0),SB ( 2, 2 2 6),
设平面 SBC的法向量为 n (x, y, z) ,


n BC 0 2x 2 y 0 ,
则 ,所以
n SB 0 2x 2 2 y 6z 0
3 3 3 3
令 z 1 y ,所以,解得: x , n ( , ,1)························ 11分
3 3 3 3
H M n
6
所以 cos HM ,n 3 5
| HM || n | 2 15 5
3
SAD SBC 5···········································所以平面 与平面 夹角的余弦值为 12分
5
22.(本小题满分12分)
ln x
解:(1)由题知:若 a 0,则 f (x) ,其定义域为 (0, ) ······················ 1分
x
f (x) 1 ln x···································································································所以 x2 2分
由 f (x) 0 得 x e
所以,当0 x e时, f (x) 0 ;当 x e时, f (x) 0
所以, f (x)在 (0,e]上单调递增,在[e, )上单调递减······································ 3分
所以 f (x) f (e) 1 4分ma
x e
( 1 a) x ln x ax
f (x) x 1 ln x·················································(2)由题知: 5分
x2 x2
由(1)知, f (x)在(0, e]上单调递增,在[e, )上单调递减
因为0 a 1,
x e f (x) ln x ax ln x当 时, a a 0,
x x
则 f (x)在 (e, )无零点········································································· 6分
0 x e f (x) ln x ax a ln x当 时, ,
x x
高三数学答案 第 6页(共 7页)
1
又因为 f ( ) a e 0 且 f (e) a
1
0
e e
所以 f (x)在(0, e)上有且只有一个零点
所以,当0 a 1时, f (x)有且只有一个零点·················································· 8分
mn nm lnm ln n········································································(3)因为 等价于 9分
m n
由(1)知:若 a 0, f (x) ln x ,且 f (x)在(0, e]上单调递增,在[e, )上单调递减,
x
且0 m n,所以0 m e,n e,即0 m e n············································· 10分
令 g(x) (2e x) ln x x ln(2e x), 0 x e,
所以 g (x) ln x 2e x ln(2e x) x ln[x(2e x)]
2e x
x
x 2e x x 2e x
ln[(x e)2 e2 ] 2e x x ln e2 2 0
x 2e x
所以 g(x)在 (0,e)上单调递增, g(x) g(e) 0········································· 11分
ln x ln(2e x)所以 , 0 x e
x 2e x
0 m e n ln m ln n ln n ln m ln(2e m)又因为 且 ,所以
m n n m 2e m
又因为n e, 2e m e,且 f (x)在[e, )上单调递减
所以 n 2e m,即m n 2e················································································12分
高三数学答案 第 7页(共 7页)
同课章节目录