人教版九年级上册数学25.2画树状图求概率同步训练
一、单选题
1.某中学举行数学竞赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( )
A. B. C. D.
2.某人有红、白、蓝三条长裤和红、白、蓝三件衬衣,他从中任意拿一条长裤和一件衬衣,恰好颜色配套的概率是( )
A. B. C. D.
3.把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是( ).
A. B. C. D.
4.柜子里有两双不同的鞋,如果从中随机地取出2只,那么取出的鞋是同一双的概率为( )
A. B. C. D.
5.某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )
A. B. C. D.
6.如图所示的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )
A. B. C. D.
7.有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是 ( )
A. B. C. D.
8.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )
A. B. C. D.
二、填空题
9.喜羊羊走进迷宫,迷宫中的每一个门都相同.第一道关口有三个门,只有其中一个门有开关;第二道关口有两个门,也只有其中一个门有开关.喜羊羊一次就能走出迷宫的概率是__________.
10.在四张相同的卡片上标有1、2、3、4四个数字,从中任意抽出两张:①两张都是偶数的概率是__________;②第一张为奇数第二张为偶数的概率是__________;③总是出现一奇一偶的概率是__________.
11.贵阳市2021年中考物理实验操作技能测试中,要求学生两人一组合作进行,并随机抽签决定分组.有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概率是___________.
12.一个不透明布袋里装有4个小球(只有编号不同),编号分别为1,2,3,4,从中任意摸出两球,两球编号之和为偶数的概率是______.
13.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,从这三张卡片中随机先后不放回地抽取两张,则两次抽出数字之和为奇数的概率是_____.
14.为了满足广大师生的饮食用餐要求,学校餐厅为师生准备了A,B,C,D四种特制套餐,丁老师和小明同学一起去吃饭,他们每人随机选取一份套餐(套餐量满足师生选择需求),则丁老师和小明选到不同种套餐的概率是_____.
15.掷--枚硬币两次,可能出现的结果有四种.我们可以利用如图所示的树状图来分析所有可能出现的结果.那么掷一枚硬币两次,至少有一次出现正面的概率是________.
16.同时掷两枚质地均匀的骰子,观察向上一面的点数,用两枚骰子的点数作为点的坐标,则点在第一象限角平分线上的概率是_____.
三、解答题
17.用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?
18.经过某路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,求下列事件的概率:
(1)两人都左拐;
(2)恰好有一人直行,另一人左拐;
(3)至少有一人直行.
19.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随机摸出一个.求下列事件的概率:
(1)第一次摸到红球,第二次摸到绿球;
(2)两次都摸到相同颜色的小球;
(3)两次摸到的球中一个绿球、一个红球.
20.—个不透明的口袋里装有分别标有以学“书”、“香”、“门”、“第”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.
(1)若从中任取一个球,球上的汉字刚好是“书”的概率为多少?
(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“书香”的概率.
试卷第2页,共3页