1.2.2 空间几何体的三视图

文档属性

名称 1.2.2 空间几何体的三视图
格式 zip
文件大小 1.9MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2012-10-01 07:44:58

图片预览

文档简介

(共51张PPT)
1.2.2 空间几何体的三视图
鹿邑三高 史琳
欣赏三视图
欣赏三视图
俯视图
正视图
俯视图
正视图
侧视图
侧视图
根据长方体的模型,请您画出它们的三视图,并观察三种图形之间的关系.
一个几何体的正视图和侧视图的高度一样,俯视图和正视图的的长度一样,侧视图和俯视图的宽度一样.
长度
高度
宽度
高平齐
宽相等
1.光线从几何体的前面向后面正投影所得到的投影图
叫做几何体的正视图.
2.光线从几何体的左面向右面正投影所得到的投影图
叫做几何体侧视图.
3.光线从几何体的上面向下面正投影所得到的投影图
叫做几何体的俯视图.
三视图
把一个空间几何体投影到一个平面上,可以获得一个平面图形.视图是指将物体按正投影向投影面投射所得到的图形.
但只有一个平面图形难以把握几何体的全貌,因此我们需要从多个角度进行投影.
结论:光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的正视图(也叫主视图);光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的俯视图;光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的侧视图(也叫左视图);
几何体的正视图、侧视图和俯视图统称为几何体的三视图。
视图是指将物体按正投影向投影面投射所得到的图形。
请观察下面的投影图,并进行比较:
请再次比较上述三个视图,
说说三视图中反应的长、宽、高的特点。
结论:
“长对正”,
“高平齐”,
“宽相等”
长对正
高平齐
宽相等
三视图的特点
正视图
侧视图
俯视图
正视图
侧视图
俯视图
·
圆柱 圆锥 球
请同学们画出下列几何图的三视图
正视图
侧视图
俯视图
三视图的作图步骤
正视图方向
侧视图方向
俯视图方向
2.运用长对正、高平齐、宽相等的原则画出其它视图
1 位置
正视图 侧视图 俯视图
从前面正对着物体观察,画出主视图,主视图反映了物体的长和高及前后两个面的实形.
从上向下正对着物体观察,画出俯视图,布置在主视图的正下方,俯视图反映了物体的长和宽及上下两个面的实形.
三视图表达的意义
从左向右正对着物体观察,画出左视图,布置在主视图的正右方,左视图反映了物体的宽和高及左右两个面的实形.
三视图能反映物体真实的形状和长、宽、高.
侧视图
正视图
从正面看
从左面看
从上面看
俯视图




“正、俯视图长对正”
“正、侧视图高平齐”
“俯、侧视图宽相等’’
“长对正,高平齐,宽相等”是三视图之间的投影规律,是画图和读图的重要依据.
同学们能画出长方体的三视图吗
问题:
基本几何体的三视图
回忆初中已经学过的正方体、长方体、圆柱、圆锥、球的三视图.
正方体的三视图



长方体



长方体的三视图
六棱柱



棱柱的三视图
棱锥的三视图
正四棱锥



棱台的三视图
正四棱台



圆柱



圆柱的三视图
圆锥



圆锥的三视图
圆台



圆台的三视图
球体



球的三视图
例1、画下例几何体的三视图
例2、画下例几何体的三视图
例3、画下例几何体的三视图
例四、画下例几何体的三视图
“视图”是将物体按正投影法向投影面投射时所得到的投影图.
光线自物体的前面向后投影所得的投影图称为“正视图” ,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的投影图称为“俯视图”.
用这三种视图即可刻划空间物体的几何结构,这种图称之为“三视图”.即向三个互相垂直的投影面分别投影,所得到的三个图形摊平在一个平面上,则就是三视图.
三视图有关概念
V正立投影面
H水平投影面
W侧立投影面
V
H
W
三视图的形成
W
V正视图
H
V
H俯视图
W侧视图
三视图的形成
俯视图
侧视图
正视图
三视图的形成
想一想:下列正三棱锥的三视图是怎样的
正三棱锥



练一练:
试画出:四棱柱、四棱锥的三视图.
圆柱



请您画出圆柱的三视图



请您画出圆锥的三视图



请您画出圆台的三视图



请您画出六棱柱的三视图
请您画出六棱锥的三视图






请您画出四棱台的三视图



请您画出球的三视图
练习8、画下例几何体的三视图
下面是一些立体图形的三视图,请根据视图说出立体图形的名称:
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体
下面是一些立体图形的三视图,请根据视图说出立体图形的名称:
正视图
侧视图
俯视图
圆锥
由三视图想象几何体
四棱锥
一个几何体的三视图如下,你能说出它是什么立体图形吗
由三视图想象几何体
如果要做一个水管的三叉接头,工人事先看到的不是图1,而是图2,然后根据这三个图形制造出水管接头.
图1
三通水管
图2
遮挡住看不见的线用虚线
画出下面这个组合图形的三视图.
圆锥
圆台
冰淇淋
请想象下面三视图所表示的几何图形的实物模型.