2021-2022学年鲁教版九年级数学下册《5.3垂径定理》优生辅导测评(附答案)
一.选择题(共10小题,满分40分)
1.如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OB=3:5,连接DO,则DE的长为( )
A.3 B.4 C.6 D.8
2.如图,⊙P与y轴交于点M(0,﹣4),N(0,﹣10),圆心P的横坐标为﹣4.则⊙P的半径为( )
A.3 B.4 C.5 D.6
3.如图,点C是半圆O的中点,AB是直径,CF⊥弦AD于点E,交AB于点F,若CE=1,EF=,则BF的长为( )
A. B.1 C. D.
4.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为( )
A.8cm B.10cm C.16cm D.20cm
5.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是( )
A. B.3 C.3 D.4
6.如图,在⊙O中,弦AB=8,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值是( )
A.2 B.4 C.6 D.8
7.小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160mm,直角顶点到轮胎与地面接触点AB长为320mm,请帮小名计算轮胎的直径为( )mm.
A.350 B.700 C.800 D.400
8.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的直径为5,BC=4,则AB的长为( )
A.2 B.2 C.4 D.5
9.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于( )
A.5 B. C.2 D.
10.如图,在⊙O中,直径CD垂直弦AB于点E,且OE=DE.点P为上一点(点P不与点B,C重合),连接AP,BP,CP,AC,BC.过点C作CF⊥BP于点F.给出下列结论:①△ABC是等边三角形;②在点P从B→C的运动过程中,的值始终等于.则下列说法正确的是( )
A.①,②都对 B.①对,②错 C.①错,②对 D.①,②都错
二.填空题(共5小题,满分30分)
11.如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE= cm.
12.在半径为2的⊙O中,弦AB=2,AC=2,则弦BC的长为 .
13.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=6,则AD= .
14.如图,矩形ABCD的边AB过⊙O的圆心,E、F分别为AB、CD与⊙O的交点,若AE=3cm,AD=4cm,DF=5cm,则⊙O的直径等于 .
15.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.
①AD AN(填“>”,“=”或“<”);
②AB=8,ON=1,⊙O的半径为 .
三.解答题(共6小题,满分50分)
16.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.
(1)请证明:E是OB的中点;
(2)若AB=6,求CD的长.
17.如图,⊙O的直径AB和弦CD相交于点E,AE=1cm,⊙O的半径为3cm,∠DEB=60°,求CD的长.
18.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=BD=2,求AB的长.
19.如图,将一个两边带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆交于点D、E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.
20.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,求⊙O的半径及EC的长.
21.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.
(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;
(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.
参考答案
一.选择题(共10小题,满分40分)
1.解:∵AB=10,OC:OB=3:5,
∴OC=3,
在Rt△OCD中,CD===4,
∵DE⊥AB,
∴DE=2CD=8,
故选:D.
2.解:过点P作PD⊥MN,连接PM,如图所示:
∵⊙P与y轴交于M(0,﹣4),N(0,﹣10)两点,
∴OM=4,ON=10,
∴MN=6,
∵PD⊥MN,
∴DM=DN=MN=3,
∴OD=7,
∵点P的横坐标为﹣4,即PD=4,
∴PM===5,
即⊙P的半径为5,
故选:C.
3.解:如图,连接AC,BC,OC,过点B作BH⊥CF交CF的延长线于H,设OC交AD于J.
∵=,
∴AC=BC,OC⊥AB,
∵AB是直径,
∴ACB=90°,
∴∠ACJ=∠CBF=45°,
∵CF⊥AD,
∴∠ACF+∠CAJ=90°,∠ACF+∠BCF=90°,
∴∠CAJ=∠BCF,
∴△CAJ≌△BCF(ASA),
∴CJ=BF,AJ=CF=1+=,
∵OC=OB,
∴OJ=OF,设BF=CJ=x.OJ=OF=y,
∵∠AEC=∠H=90°,∠CAE=∠BCH,CA=CB,
∴△ACE≌△CBH(AAS),
∴EC=BH=1,
∵∠ECJ=∠FCO,∠CEJ=∠COF=90°,
∴△CEJ∽△COF,
∴==,
∴==,
∴EJ=,
∵BF=CJ,∠H=∠CEJ,∠CJE=∠BFH,
∴△BHF≌△CEJ(AAS),
∴FH=EJ=,
∵AE∥BH,
∴=,
∴=,
整理得,10x2+7xy﹣6y2=0,
解得x=y或x=﹣y(舍弃),
∴y=2x,
∴=,
解得x=或﹣(舍弃).
∴BF=,
故选:A.
4.解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:
∵AB=48cm,
∴BD=AB=×48=24(cm),
∵⊙O的直径为52cm,
∴OB=OC=26cm,
在Rt△OBD中,OD===10(cm),
∴CD=OC﹣OD=26﹣10=16(cm),
故选:C.
5.解:连接OD,交AC于F,
∵D是的中点,
∴OD⊥AC,AF=CF,
∴∠DFE=90°,
∵OA=OB,AF=CF,
∴OF=BC,
∵AB是直径,
∴∠ACB=90°,
在△EFD和△ECB中
∴△EFD≌△ECB(AAS),
∴DF=BC,
∴OF=DF,
∵OD=3,
∴OF=1,
∴BC=2,
在Rt△ABC中,AC2=AB2﹣BC2,
∴AC===4,
故选:D.
6.解:作OH⊥AB于H,连接OA、OD,如图,
∴AH=BH=AB=×8=4,
∵CD⊥OC,
∴CD=,
而OD为定值,OC最小时,CD最大,
∴当OC=OH时,CD的值最大,
∴CD的最大值为4.
故选:B.
7.解:如图,连接OB,OC,作CD⊥OB于D.
设⊙O半径为xmm,在Rt△OCD中,
由勾股定理得方程,(x﹣160)2+3202=x2,
解得,x=400,
∴2x=800,
答:车轱辘的直径为800mm.
故选:C.
8.解:连接OB,
∵AO⊥BC,AO过O,BC=4,
∴BD=CD=2,∠BDO=90°,
由勾股定理得:OD===,
∴AD=OA+OD=+=4,
在Rt△ADB中,由勾股定理得:AB===2,
故选:A.
9.解:∵OM⊥AB,ON⊥AC,垂足分别为M、N,
∴M、N分别是AB与AC的中点,
∴MN是△ABC的中位线,
∴BC=2MN=2,
故选:C.
10.解:如图,作CM⊥AP于M,连接AD.
∵AE⊥OD,OE=DE,
∴AO=AD,
∵OA=OD,
∴AO=AD=OD,
∴△AOD是等边三角形,
∴∠D=∠ABC=60°,
∵CD⊥AB,
∴AE=EB,
∴CA=CB,
∴△ABC是等边三角形,故①正确,
∵∠CPA=∠ABC=60°,∠APB=∠ACB=60°,
∴∠CPF=180°﹣60°﹣60°=60°,
∵∠CPM=∠CPF=60°,CF⊥PF,CM⊥PA,
∴CF=CM,
∵PC=PC,∠CFP=∠CMP,
∴Rt△CPF≌Rt△CPM(HL),
∴PF=PM,
∵AC=BC,CM=CF,∠AMC=∠CFB=90°,
∴Rt△AMC≌Rt△BFC(HL),
∴AM=BF,
∴AP﹣PB=PM+AM﹣(BF﹣PF)=2PM=2PF,
∴=,
在Rt△CPF中,∵∠CPF=60°,∠CFP=90°,
∴CF=PF tan60°=PF,
∴PF=CF,
∴=,故②正确,
故选:A.
二.填空题(共5小题,满分30分)
11.解:∵CD⊥OB,
∴CE=DE=CD=4,
在Rt△OCE中,OE==3,
∴AE=AO+OE=5+3=8(cm).
故答案为8.
12.解:分两种情况:
①如图1所示:作OE⊥AC于E,连接OA、OB,
则AE=CE=AC=,
∴OE===1=OA,
∴∠OAE=30°,
∵OA=OB=2,AB=2,
∴OA=OB=AB,
∴∠OAB=60°,
∴∠BAC=90°,
∴BC是⊙O的直径,
∴BC=2OA=4;
②如图2所示:作OE⊥AC于E,连接OA、OB,
同①得:∠OAE=30°,
∵OA=OB=AB,
∴∠AOB=60°,
∴∠BAC=30°,∠ACB=∠AOB=30°,
∴∠BAC=∠C,
∴BC=AB=2;
故答案为:4或2.
13.解:
∵CE=2,DE=6,
∴CD=DE+CE=8,
∴OD=OB=OC=4,
∴OE=OC﹣CE=4﹣2=2,
在Rt△OEB中,由勾股定理得:BE===2,
∵CD⊥AB,CD过O,
∴AE=BE=2,
在Rt△AED中,由勾股定理得:AD===4,
故答案为:4.
14.解:连接OF,作FG⊥AB于点G.
则EG=DF﹣AE=5﹣3=2cm.
设⊙O的半径是R,
则OF=R,OG=R﹣2.
在直角△OFG中,OF2=FG2+OG2,
即R2=(R﹣2)2+42,
解得:R=5.
则直径是10cm.
故答案是:10.
15.解:(1)AD=AN,
证明:∵CD⊥AB
∴∠CEB=90°
∴∠C+∠B=90°,
同理∠C+∠CNM=90°
∴∠CNM=∠B
∵∠CNM=∠AND
∴∠AND=∠B,
∵∠D=∠B,
∴∠AND=∠D,
∴AN=AD,
故答案为=;
(2)设OE的长为x,连接OA
∵AN=AD,CD⊥AB
∴DE=NE=x+1,
∴OD=OE+ED=x+x+1=2x+1,
∴OA=OD=2x+1,
∴在Rt△OAE中OE2+AE2=OA2,
∴x2+42=(2x+1)2.
解得x=或x=﹣3(不合题意,舍去),
∴OA=2x+1=2×+1=,
即⊙O的半径为,
故答案为.
三.解答题(共6小题,满分50分)
16.(1)证明:连接AC,如图所示:
∵直径AB垂直于弦CD于点E,
∴,
∴AC=AD,
∵过圆心O的线CF⊥AD,
∴AF=DF,
即CF是AD的中垂线,
∴AC=CD,
∴AC=AD=CD.
即△ACD是等边三角形,
∴∠FCD=30°,
在Rt△COE中,OE=OC,
∴OE=OB,
∴点E为OB的中点;
(2)解:在Rt△OCE中,AB=6,
∴OC=AB=3,
又∵BE=OE,
∴OE=,
∴CE===,
∴CD=2CE=3.
17.解:作OP⊥CD于P,连接OD,如图所示:
则CP=PD=CD,
∵AE=1cm,⊙O的半径为3cm,
∴OE=OA﹣AE=2cm,
在Rt△OPE中,∠DEB=60°,
∴∠POE=30°,
∴PE=OE=1cm,OP=PE=cm,
∴PD===(cm),
∴CD=2PD=2cm.
18.解:∵AB⊥CD,
∴CH=DH=CD=1,
在Rt△BDH中,∵sinB=,
∴∠B=30°,
连接OD,如图,
∵∠HOD=2∠B=60°,
∴OH=DH=,
∴OD=2OH=,
∴AB=2OD=.
19.解:过点O作OM⊥DE于点M,连接OD.
∴DM=DE.
∵DE=8(cm)
∴DM=4(cm)
在Rt△ODM中,∵OD=OC=5(cm),
∴OM===3(cm)
∴直尺的宽度为3cm.
20.解:∵OD⊥弦AB,AB=8,
∴AC===4,
设⊙O的半径OA=r,
∴OC=OD﹣CD=r﹣2,
在Rt△OAC中,
r2=(r﹣2)2+42,
解得:r=5,
连接BE,如图,
∵OD=5,CD=2,
∴OC=3,
∵AE是直径,
∴∠ABE=90°,
∵OC是△ABE的中位线,
∴BE=2OC=6,
在Rt△CBE中,CE=.
21.解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.
∵AB∥CD,EF⊥AB,
∴EF⊥CD,
∴∠CEF=∠BFO=90°
∴AF=BF=x,DE=EC=2,
根据勾股定理可得:,
解得(舍弃)或,
∴BF=4,AB=2BF=8.
(2)如图2中,作CH⊥AB于H.
∵OB⊥OC,
∴∠A=∠BOC=45°,
∵AH⊥CH,
∴△ACH是等腰直角三角形,
∵AC=CH,
∵AB∥CD,EF⊥AB,
∴EF⊥CD,
∠CEF=∠EFH=∠CHF=90°,
∴四边形EFHC是矩形,
∴CH=EF,
在Rt△OEC中,∵EC=,OC=,
OE===2,
∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,
∴∠FOB=∠ECO,
∵OB=OC,
∴△OFB≌△CEO(AAS),
∴OF=EC=,
∴CH=EF=3,
∴AC=EF=6.