2021-2022学年高一(上)必修第二册数学(人教B版2019)
第五章 统计与概率 尖子生训练卷
一、单选题。本大题共8小题,每小题5分,共40分,每小题只有一个选项符合题意。
1.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价(元) 4 5 6 7 8 9
销量(件) 90 84 83 80 75 68
由表中数据,求得线性回归方程为.若在这些样本点中任取一点,则它在回归直线左下方的概率为( )
A. B. C. D.
2.下列命题中正确的是( )
A.事件发生的概率等于事件发生的频率
B.一个质地均匀的骰子掷一次得到3点的概率是,说明这个骰子掷6次一定会出现一次3点
C.掷两枚质地均匀的硬币,事件为“一枚正面朝上,一枚反面朝上”,事件为“两枚都是正面朝上”,则
D.对于两个事件、,若,则事件与事件互斥
3.某班50名学生在一次百米测试中,成绩全部介于13s与19s之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13s且小于14s;第二组,成绩大于等于14s且小于15s;……;第六组,成绩大于等于18s且小于等于19s.如图是按上述分组方法得到的频率分布直方图.设成绩小于17s的学生人数占全班总人数的百分比为,成绩大于等于15s且小于17s的学生人数为,平均成绩为,则从频率分布直方图中可分析出,,的值分别为( )
A.90%,35,15.86 B.90%,45,15.5
C.10%,35,16 D.10%,45,16.8
4.进入8月份后,我市持续高温,气象局一般会提前发布高温橙色预警信号(高温橙色预警标准为24小时内最高气温将升至37摄氏度以上),在今后的3天中,每一天最高气温在37摄氏度以上的概率是.用计算机生成了20组随机数,结果如下,若用0,1,2,3,4,5表示高温橙色预警,用6,7,8,9表示非高温橙色预警,则今后的3天中恰有2天发布高温橙色预警信号的概率估计是( )
116 785 812 730 134 452 125 689 024 169
334 217 109 361 908 284 044 147 318 027
A. B. C. D.
5.在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )
A.成绩在分的考生人数最多 B.不及格的考生人数为1000
C.考生竞赛成绩的平均分约70.5分 D.考生竞赛成绩的中位数为75分
6.我国在北宋1084年第一次印刷出版了《算经十书》,即贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》、《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.这些书中涉及的很多方面都达到古代数学的高峰,其中一些“算法”如开立方和开四次方也是当时世界数学的高峰.某图书馆中正好有这十本书现在小明同学从这十本书中任借两本阅读,那么他取到的书的书名中有“算”字的概率为( )
A. B. C. D.
7.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( )
A. B. C. D.
8.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.“至少有1个白球”和“都是红球”
B.“至少有2个白球”和“至多有1个红球”
C.“恰有1个白球” 和“恰有2个白球”
D.“至多有1个白球”和“都是红球”
二、多选题。本大题共4小题,每小题5分,共20分,每小题有两项或以上符合题意。
9.某机构要调查某小区居民生活垃圾的投放情况(该小区居民的生活垃圾以厨余垃圾 可回收物 其他垃圾为主),随机抽取了该小区“厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱这三类垃圾箱,总计1000千克的生活垃圾,数据(单位:千克)统计如下:
“厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱
厨余垃圾的总投放质量/千克 400 100 100
可回收物的总投放质量/千克 30 240 30
其他垃圾的总投放质量/千克 20 20 60
根据样本数据估计该小区居民生活垃圾的投放情况,下列结论正确的是( )
A.厨余垃圾投放正确的概率为.
B.居民生活垃圾投放错误的概率为.
C.该小区这三类垃圾中,其他垃圾投放正确的概率最低.
D.厨余垃圾在“厨余垃圾”箱 “可回收物”箱,“其他垃圾”箱的投放量的方差是20000.
10.已知事件,,且,,则下列结论正确的是( )
A.如果,那么,
B.如果与互斥,那么,
C.如果与相互独立,那么,
D.如果与相互独立,那么,
11.抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为,则下列结论中正确的是( )
A. B. C. D.
12.一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为. 则其中正确命题的序号是( )
A.① B.② C.③ D.④
三、填空题。本大题共4小题,每小题5分,共20分。
13.已知甲、乙两人每次射击命中目标的概率分别为和,甲和乙是否命中目标互不影响,且各次射击是否命中目标也互不影响.若按甲、乙、甲、乙……的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时,甲射击了两次的概率是______.
14.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件“取出的两球同色”,“取出的2球中至少有一个黄球”,“取出的2球至少有一个白球”,“取出的两球不同色”,“取出的2球中至多有一个白球”.下列判断中正确的序号为________.
①与为对立事件;②与是互斥事件;③与是对立事件:④;⑤.
15.在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:
①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;
②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;
③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是____________.
16.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为,,,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________.
四、解答题。本大题共6小题,共70分,解答过程必修有必要的文字说明,公式和解题过程。
17.某果园的果农现从该果园的蜜柚树上随机摘下了100个蜜柚进行测重,其质量(单位:g)分别在,,,,,中,其频率分布直方图如图所示.
(1)已知按分层随机抽样的方法从质量在,的蜜柚中抽取了5个,现从这5个蜜柚中随机抽取2个,求这2个蜜柚的质量均小于2000g的概率.
(2)以各组数据的中间值为代表,以频率代表概率,已知该果园有5000个蜜柚等待出售,某电商提出了两种收购方案:
方案一:所有蜜柚均以30元/kg收购;
方案二:低于2250g的蜜柚以60元/个收购,高于或等于2250g的以80元/个收购.
请你任选择一种方案计算收益.
18.一个不透明的袋子中装有5个小球,其中有3个红球,2个白球,这些球除颜色外完全相同.
(1)记事件为“一次摸出2个球,摸出的球为一个红球,一个白球”.求;
(2)记事件为“第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,记事件为“第一次摸出一个球,不放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,求证:.
19.年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为帮助某村巩固扶贫成果,该村的结对帮扶共建企业在该村建立了一座精米加工厂,并对粮食原料进行深加工,研发出一种新产品,已知该产品的质量以某项指标值为衡量标准,质量指标的等级划分如表:
质量指标值
产品等级
为了解该产品的生产效益,该企业先进行试生产,从中随机抽取了件产品,测量了每件产品的指标值,得到如下的产品质量指标值的频率分布直方图;设,当时,满足.
(1)试估计样本质量指标值的中位数;
(2)从样本质量指标值不小于的产品中采用分层抽样的方法抽取件产品,然后从这件产品中任取件产品,求至少有件级品的概率.
20.某餐厅提供自助餐和点餐两种服务,其单人平均消费相近,为了进一步提高菜品及服务质量,餐厅从某日中午就餐的顾客中随机抽取了100人作为样本,得到以下数据表格.
(单位:人次)
满意度 老年人 中年人 青年人
自助餐 点餐 自助餐 点餐 自助餐 点餐
10分(满意) 12 1 20 2 20 1
5分(一般) 2 2 6 3 4 12
0分(不满意) 1 1 6 2 3 2
(1)由样本数据分析,三种年龄层次的人群中,哪一类更倾向于选择自助餐
(2)为了和顾客进行深人沟通交流,餐厅经理从点餐不满意的顾客中选取2人进行交流,求两人都是中年人的概率;
(3)若你朋友选择到该餐厅就餐,根据表中的数据,你会建议你朋友选择哪种就餐方式
21.某网上电子商城销售甲 乙两种品牌的固态硬盘,甲 乙两种品牌的固态硬盘保修期均为3年,现从该商城已售出的甲 乙两种品牌的固态硬盘中各随机抽取50个,统计这些固态硬盘首次出现故障发生在保修期内的数据如下:
型号 甲 乙
首次出现故障的时间x(年)
硬盘数(个) 2 1 2 1 2 3
假设甲 乙两种品牌的固态硬盘首次出现故障相互独立.
(1)从该商城销售的甲品牌固态硬盘中随机抽取一个,试估计首次出现故障发生在保修期内的概率;
(2)某人在该商城同时购买了甲 乙两种品牌的固态硬盘各一个,试估计恰有一个首次出现故障发生在保修期的第3年(即)的概率.
22.海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区 A B C
数量/件 50 150 100
(1)求这6件样品中来自A,B,C三个地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
参考答案
1.B
【解析】因为,,
由在线性回归直线上得,即线性回归方程为
经过计算只有和两个点在直线的左下方,故所求概率为,
故选:B.
2.C
【解析】解:对于A选项,频率与实验次数有关,且在概率附近摆动,故A选项错误;
对于B选项,根据概率的意义,一个质地均匀的骰子掷一次得到3点的概率是,表示一次实验发生的可能性是,故骰子掷6次出现3点的次数也不确定,故B选项错误;
对于C选项,根据概率的计算公式得,,故,故C选项正确;
对于D选项,设,A事件表示从中任取一个数,使得的事件,则,B事件表示从中任取一个数,使得的事件,则,显然,此时A事件与B事件不互斥,故D选项错误.
3.A
【解析】由频率分布直方图可得,
,,
第一组的频率为,第二组的频率为,第三组的频率为,
第四组的频率为,第五组的频率为,第六组的频率为,
则,
即.
故选:A
4.B
【解析】观察20个随机数,其中有116,812,730,217,109,361,284,147,318,027共10个表示3天中恰有2天发布高温橙色预警信号,
因此所求概率为.
故选:B.
5.D
【解析】由频率分布直方图可得,成绩在的频率最高,因此考生人数最多,故A正确;
由频率分布直方图可得,成绩在的频率为,因此,不及格的人数为,故B正确;
由频率分布直方图可得:平均分等于,故C正确;
因为成绩在的频率为,由的频率为,所以中位数为,故D错误.
故选D.
6.D
【解析】解: 小明同学从这十本书中任借两本阅读,基本事件总数,
他取到的书的书名中有“算”字包含的基本事件总数,
那么他取到的书的书名中有“算”字的概率为.
故选:D.
7.A
【解析】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1),
而加数全为质数的有(3,3),
根据古典概型知,所求概率为.
故选:A.
8.C
【解析】对于选项A, “至少有1个白球”和“都是红球”是对立事件,不符合题意;
对于选项B, “至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;
对于选项C, “恰有1个白球”表示取出2个球1个红球1个白球, 与“恰有2个白球”是互斥而不对立的两个事件,符合题意;
对于选项D, “至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.
故选C.
9.ACD
【解析】解:对于A选项,由题可知厨余垃圾的总投放质量为600千克,其中投放到“厨余垃圾”箱的有400千克,故厨余垃圾投放正确的概率为,故A选项正确;
对于B选项,由表中数据可知,居民垃圾投放错误的有千克,故居民生活垃圾投放错误的概率为,故B选项错误;
对于C选项,由表中数据可知,可回收物的总投放质量为300千克,其中正确投放的有240千克,故可回收物投放正确的概率为,其他垃圾的总投放质量为100千克,其中正确投放的有60千克,故其他垃圾投放正确的概率为,再结合A选项厨余垃圾投放正确的概率为,故,即其他垃圾投放正确的概率最低,故C选项正确;
对于D选项,由题知厨余垃圾在在“厨余垃圾”箱 “可回收物”箱,“其他垃圾”箱的平均投放量为200千克,根据方差的计算公式得,故D选项正确.
故选:ACD
10.BD
【解析】解:A选项:如果,那么,,故A选项错误;
B选项:如果与互斥,那么,,故B选项正确;
C选项:如果与相互独立,那么,,故C选项错误;
D选项:如果与相互独立,那么,,故D选项正确.
故选:BD.
11.CD
【解析】由题意,抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为,
根据独立重复试验的概率计算公式,
可得:,
由,故A是错误的;
由,故B是错误的;
由,故C是正确的;
由,故D是正确的.
故选:CD
12.ABD
【解析】一袋中有大小相同的4个红球和2个白球,
①从中任取3球,恰有一个白球的概率是故正确;
②从中有放回的取球6次,每次任取一球,每次抽到白球的概率为,则恰好有两次白球的概率为,故正确;
③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为,故错误;
④从中有放回的取球3次,每次任取一球,每次抽到红球的概率为:则至少有一次取到红球的概率为,故正确.
故选:ABD.
13.
【解析】解:设事件表示“甲射击一次命中目标”,事件表示“乙射击一次命中目标”,则,相互独立,停止射击时甲射击了两次包括两种情况:
①甲、乙第一次射击都未命中,甲第二次射击命中,
此时的概率为;
②甲、乙第一次射击都未命中,甲第二次射击未命中,乙第二次射击命中,此时的概率为.
故停止射击时,甲射击了两次的概率是.
故答案为:.
14.①④
【解析】口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球,
事件 “取出的两球同色”, “取出的2球中至少有一个黄球”,
“取出的2球至少有一个白球”, “取出的两球不同色”, “取出的2球中至多有一个白球”,
①,由对立事件定义得与为对立事件,故①正确;
②,与有可能同时发生,故与不是互斥事件,故②错误;
③,与有可能同时发生,不是对立事件,故③错误;
④,(C),(E),,
从而(C)(E),故④正确;
⑤,,从而(B)(C),故⑤错误.
故答案为:①④.
15.②③
【解析】不能确定甲乙两校的男女比例,故①不正确;
因为甲乙两校的男生的优秀率均大于女生成绩的优秀率,故甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率,故②正确;
因为不能确定甲乙两校的男女比例,故不能确定甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系,故③正确.
故答案为:②③.
16.
【解析】记“该选手能正确回答第轮的问题”为事件,则.
该选手被淘汰的概率:
故答案为:
17.
(1)
(2)选方案一,收益为元;选方案二,收益为元.
(1)
解:质量在和中的频率分别是和.按照分层随机抽样的方法抽取5个蜜柚,
则质量在中应抽取(个),质量在中应抽取(个),
设按分层随机抽样抽取的5个蜜柚中质量在中的2个蜜柚分别为,,质量在中的3个蜜柚分别为,.,
则从这5个蜜柚中随机抽取2个的可能情况有,,,,,,,,,,共10种.
抽取的2个蜜柚质量均小于2000g的可能情况只有,
所以所求概率为.
(2)
解:若选方案一:
由频率分布直方图知蜜柚质量在各段的频率依次为0.1,0.1,0.15,0.4,0.2,0.05,所以各质量段的蜜柚个数依次为500,500750,2000,1000,250,
则收益为(元).
若选方案二:
由频率分布直方图知蜜柚质量在各段的频率依次为0.1,0.1,0.15,0.4,0.2,0.05,所以各质量段的蜜柚个数依次为500,500,750,2000,1000,250,
则收益为(元).
18.(1);(2)证明见解析.
【解析】解:(1)记这3个红球为,2个白球记为,则从袋中一次摸出2个球的所有基本事件为:,,,,,,,,,共10个,其中满足事件的基本事件有6个,所以.
(2)从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件为,,,,,,,,,,,,,,,,,,,,,,,,共25个,满足事件的基本事件有12个,所以.
从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件为,,,,,,,,,,,,,,,,,,,共20个,满足事件的基本事件有12个,所以.
因此:,
又,所以.
19.(1);(2).
【解析】(1)当时,,,频率为;
当时,,,频率为;
当时,,,频率为.
各产品等级的频率如下表所示:
质量指标值
产品等级
频率
,,
所以,,解得;
(2)所抽取的件产品中,级品的数量为,分别记为、、,
级品的数量为,分别记为、、、,
从这件产品中任取件产品,所有的基本事件有:、、、、、、、、、、、、、、、、、、、、,共个基本事件,
其中,事件“所抽的件产品中至少有件级品”包含个基本事件,
因此,所求事件的概率为.
20.(1)中年人更倾向于选择自助餐;(2);(3)建议其选择自助餐.
【解析】(1)由题知,老年人选择自助餐的频率,
中年人选择自助餐的频率,
青年人选择自助餐的频率,
则,
即中年人更倾向于选择自助餐.
(2)点餐不满意的人群中,老年人1人(设为),中年人2人(设为,),青年人2人(设为,).
从中选取2人,其基本事件有,,,,,
,,,,,共10个
基本事件,其中2人都是中年人仅有一个符合题意;
故两人都是中年人的概率为.
(3)由表可知,自助餐满意的均值为:.
点餐满意的均值为:
,故建议其选择自助餐.
21.(1);(2)
【解析】解:(1)在图表中,甲品牌的个样本中,
首次出现故障发生在保修期内的概率为:,
设从该商城销售的甲品牌固态硬盘中随机抽取一个,
其首次出现故障发生在保修期内为事件,
利用频率估计概率,得,
即从该商城销售的甲品牌固态硬盘中随机抽取一个,
其首次出现故障发生在保修期内的概率为:;
(2)设从该商城销售的甲品牌固态硬盘中随机抽取一个,
其首次出现故障发生在保修期的第3年为事件,
从该商城销售的乙品牌固态硬盘中随机抽取一个,
其首次出现故障发生在保修期的第3年为事件,
利用频率估计概率,得:,
则
,
某人在该商城同时购买了甲 乙两种品牌的固态硬盘各一个,恰有一个首次出现故障发生在保修期的第3年的概率为:.
22.(1)1,3,2;(2).
【解析】(1)由题意,样品中来自A地区商品的数量为,
来自B地区商品的数量为,
来自C地区商品的数量为;
(2)设来自地区的样品编号为,来自地区的样品编号为,,,
来自地区的样品编号为,,
则从6件样品中抽取2件产品的所有基本事件为:
,,,,,,,,
,,,,,,,共15个;
抽取的这2件产品来自相同地区的基本事件有:
,,,,共4个;
故所求概率.