课时1:集合的基本运算
课 型:新授课
教学目标:
(1)理解交集与并集的概念;
(2)掌握交集与并集的区别与联系;
(3)会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题。
教学重点:交集与并集的概念,数形结合的思想。
教学难点:理解交集与并集的概念、符号之间的区别与联系。
教学过程:
一、复习回顾:
1.已知A={1,2,3},S={1,2,3,4,5},则A S;{x|x∈S且xA}= 。
2.用适当符号填空:
0 {0}; 0 Φ; Φ {x|x+1=0,x∈R}
{0} {x|x<3且x>5}; {x|x>6} {x|x<-2或x>5} ; {x|x>-3} {x>2}
二、新课教学
(一). 交集、并集概念及性质的教学:
思考1.考察下列集合,说出集合C与集合A,B之间的关系:
(1),;
(2),;
由学生通过观察得结论。
并集的定义:
一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A与集合B的并集(union set)。记作:A∪B(读作:“A并B”),即
用Venn图表示:
这样,在问题(1)(2)中,集合A,B的并集是C,即
= C
说明:定义中要注意“所有”和“或”这两个条件。
讨论:A∪B与集合A、B有什么特殊的关系?
A∪A= , A∪Ф= , A∪B B∪A
A∪B=A , A∪B=B .
巩固练习(口答):
①.A={3,5,6,8},B={4,5,7,8},则A∪B= ;
②.设A={锐角三角形},B={钝角三角形},则A∪B= ;
③.A={x|x>3},B={x|x<6},则A∪B= 。
交集的定义:
一般地,由属于集合A且属于集合B的所有元素组成的集合,叫作集合A、B的交集(intersection set),记作A∩B(读“A交B”)即:
A∩B={x|x∈A,且x∈B}
用Venn图表示:(阴影部分即为A与B的交集)
常见的五种交集的情况:
讨论:A∩B与A、B、B∩A的关系?
A∩A= A∩Ф= A∩B B∩A
A∩B=A A∩B=B
巩固练习(口答):
①.A={3,5,6,8},B={4,5,7,8},则A∩B= ;
②.A={等腰三角形},B={直角三角形},则A∩B= ;
③.A={x|x>3},B={x|x<6},则A∩B= 。
(二)例题讲解:
例1.(课本例5)设集合,求A∪B.
变式:A={x|-5≤x≤8}
例2.(课本例7)设平面内直线上点的集合为L1,直线上点的集合为L2,试用集合的运算表示,的位置关系。
例3.已知集合
是否存在实数m,同时满足?
(m=-2)
(三)课堂练习:
归纳小结:
本节课从实例入手,引出交集、并集的概念及符号;并用Venn图直观地把两个集合之间的关系表示出来,要注意数轴在求交集和并集中的运用。
课后记:
课时2:集合的基本运算
课 型:新授课
教学目标:
(1)掌握交集与并集的区别,了解全集、补集的意义,
(2)正确理解补集的概念,正确理解符号“”的涵义;
(3)会求已知全集的补集,并能正确应用它们解决一些具体问题。
教学重点:补集的有关运算及数轴的应用。
教学难点:补集的概念。
教学过程:
一、复习回顾:
1. 提问:.什么叫子集、真子集、集合相等?符号分别是怎样的?
2. 提问:什么叫交集、并集?符号语言如何表示?
3. 交集和补集的有关运算结论有哪些?
4. 讨论:已知A={x|x+3>0},B={x|x≤-3},则A、B与R有何关系?
二、新课教学
思考1. U={全班同学}、A={全班参加足球队的同学}、
B={全班没有参加足球队的同学},则U、A、B有何关系?
由学生通过讨论得出结论:
集合B是集合U中除去集合A之后余下来的集合。
(一). 全集、补集概念及性质的教学:
全集的定义:
一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集(universe set),记作U,是相对于所研究问题而言的一个相对概念。
补集的定义:
对于一个集合A,由全集U中不属于集合A的所有元素组成的集合,叫作集合A相对于全集U的补集(complementary set),记作:,
读作:“A在U中的补集”,即
用Venn图表示:(阴影部分即为A在全集U中的补集)
讨论:集合A与之间有什么关系?→借助Venn图分析
巩固练习(口答):
①.U={2,3,4},A={4,3},B=φ,则= ,= ;
②.设U={x|x<8,且x∈N},A={x|(x-2)(x-4)(x-5)=0},则= ;
③.设U={三角形},A={锐角三角形},则= 。
(二)例题讲解:
例1.(课本例8)设集,求,.
例2.设全集,求,
,。
(结论:)
例3.设全集U为R,,若
,求。 (答案:)
(三)课堂练习:
一、选择题
1.下列命题正确的有( )
(1)很小的实数可以构成集合;
(2)集合与集合是同一个集合;
(3)这些数组成的集合有个元素;
(4)集合是指第二和第四象限内的点集。
A.个 B.个 C.个 D.个
2.若集合,,且,则的值为( )
A. B. C.或 D.或或
3.若集合,则有( )
A. B. C. D.
4.方程组的解集是( )
A. B. C. D.。
5.下列式子中,正确的是( )
A. B.
C.空集是任何集合的真子集 D.
6.下列表述中错误的是( )
A.若
B.若
C.
D.
二、填空题
1.用适当的符号填空
(1)
(2),
(3)
2.设
则。
3.某班有学生人,其中体育爱好者人,音乐爱好者人,还有人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人。
4.若且,则 。
5.已知集合至多有一个元素,则的取值范围 ;
若至少有一个元素,则的取值范围 。
三、解答题
1.设
2.设,其中,
如果,求实数的取值范围。
3.集合,,
满足,求实数的值。
4.设,集合,;
若,求的值。
归纳小结:
补集、全集的概念;补集、全集的符号;图示分析(数轴、Venn图)。
课后记:
练习 参考答案
一、选择题
A (1)错的原因是元素不确定,(2)前者是数集,而后者是点集,种类不同,
(3),有重复的元素,应该是个元素,(4)本集合还包括坐标轴
2. D 当时,满足,即;当时,
而,∴;∴;
3. A ,;
4. D ,该方程组有一组解,解集为;
5. D 选项A应改为,选项B应改为,选项C可加上“非空”,或去掉“真”,选项D中的里面的确有个元素“”,而并非空集;
6. C 当时,
二、填空题
1.
(1),满足,
(2)估算,,
或,
(3)左边,右边
2.
3. 全班分类人:设既爱好体育又爱好音乐的人数为人;仅爱好体育
的人数为人;仅爱好音乐的人数为人;既不爱好体育又不爱好音乐的
人数为人 。∴,∴。
4. 由,则,且。
5. ,
当中仅有一个元素时,,或;
当中有个元素时,;
当中有两个元素时,;
三、解答题
解:由得的两个根,
即的两个根,
∴,,
∴
2.解:由,而,
当,即时,,符合;
当,即时,,符合;
当,即时,中有两个元素,而;
∴得
∴。
3.解: ,,而,则至少有一个元素在中,
又,∴,,即,得
而矛盾,
∴
4. 解:,由,
当时,,符合;
当时,,而,∴,即
∴或。
A B
A(B)
A
B
B
A
B A集合的基本运算
一、复习回顾:
1.已知A={1,2,3},S={1,2,3,4,5},则A S;{x|x∈S且xA}= 。
2.用适当符号填空:
0 {0}; 0 Φ; Φ {x|x+1=0,x∈R}
{0} {x|x<3且x>5}; {x|x>6} {x|x<-2或x>5} ; {x|x>-3} {x>2}
思考1.考察下列集合,说出集合C与集合A,B之间的关系:
(1),;
(2),;
二、巩固练习(口答):
①.A={3,5,6,8},B={4,5,7,8},则A∪B= ;
②.设A={锐角三角形},B={钝角三角形},则A∪B= ;
③.A={x|x>3},B={x|x<6},则A∪B= 。
三、巩固练习(口答):
①.A={3,5,6,8},B={4,5,7,8},则A∩B= ;
②.A={等腰三角形},B={直角三角形},则A∩B= ;
③.A={x|x>3},B={x|x<6},则A∩B= 。
(二)例题讲解:
例1.(课本例5)设集合,求A∪B.
变式:A={x|-5≤x≤8}
例2.(课本例7)设平面内直线上点的集合为L1,直线上点的集合为L2,试用集合的运算表示,的位置关系。
例3.已知集合
是否存在实数m,同时满足?
(m=-2)
一、巩固练习(口答):
①.U={2,3,4},A={4,3},B=φ,则= ,= ;
②.设U={x|x<8,且x∈N},A={x|(x-2)(x-4)(x-5)=0},则= ;
③.设U={三角形},A={锐角三角形},则= 。
(二)例题讲解:
例1.(课本例8)设集,求,.
例2.设全集,求,
,。
(结论:)
例3.设全集U为R,,若
,求。 (答案:)
(三)课堂练习:
一、选择题
1.下列命题正确的有( )
(1)很小的实数可以构成集合;
(2)集合与集合是同一个集合;
(3)这些数组成的集合有个元素;
(4)集合是指第二和第四象限内的点集。
A.个 B.个 C.个 D.个
2.若集合,,且,则的值为( )
A. B. C.或 D.或或
3.若集合,则有( )
A. B. C. D.
4.方程组的解集是( )
A. B. C. D.。
5.下列式子中,正确的是( )
A. B.
C.空集是任何集合的真子集 D.
6.下列表述中错误的是( )
A.若
B.若
C.
D.
二、填空题
1.用适当的符号填空
(1)
(2),
(3)
2.设
则。
3.某班有学生人,其中体育爱好者人,音乐爱好者人,还有人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人。
4.若且,则 。
5.已知集合至多有一个元素,则的取值范围 ;
若至少有一个元素,则的取值范围 。
三、解答题
1.设
2.设,其中,
如果,求实数的取值范围。
3.集合,,
满足,求实数的值。
4.设,集合,;
若,求的值。