2021-2022学年华东师大版八年级数学上册12.2.1 单项式乘以单项式 同步测试卷(word版含答案)

文档属性

名称 2021-2022学年华东师大版八年级数学上册12.2.1 单项式乘以单项式 同步测试卷(word版含答案)
格式 docx
文件大小 65.3KB
资源类型 教案
版本资源 华师大版
科目 数学
更新时间 2021-11-26 07:06:50

图片预览

文档简介

12.2.1 单项式乘以单项式同步测试卷 2021-2022学年华东师大版八年级数学上册
学校:___________姓名:___________班级:___________考号:___________
一、选择题(本大题共7小题,共21分)
计算的结果是( )
A. B. C. D.
下列计算①3x3·(-2x2)=-6x5;②3a2·4a2=12a2;③3b3·8b3=24b9;④-3x·2xy=6x2y.正确的有( )
A. 个 B. 个 C. 个 D. 个
下列计算中,不正确的是()
A.
B.
C.
D.
如果单项式与,是同类项,那么这两个单项式的积是()
A. B. C. D.
若(8×106)×(5×102)×(2×10)=M×10a(1<M<10,a为整数),则M,a的值为( )
A. , B. ,
C. , D. ,
如图,已知四边形ABCG和四边形CDEF都是长方形,则它们的面积之和为( )
A. B. C. D.
下列各式中能填入括号的式子为:(-3ab)( )=-bc.
A. B. C. D.
二、填空题(本大题共2小题,共9分)
一种计算机每秒可做2×1010次运算,它工作600s可做_____________次运算.
一个长方体的长为cm,宽为cm,高为cm,则它的体积是________.
三、计算题(本大题共4小题,共40分)
计算:
(1)(-3ab)·(-2a)·(-a2b3);
(2)(-3x2y)2·(-2xy);
(3)(-2a2b)2·(-2a2b2)3;
(4).
已知(2x3y2)·(-3xmy3)·(5x2yn)=-30x6y8,求m+n的值.
有理数x,y满足条件|2x+4|+(x+3y+5)2=0,求(-2xy)2·(-y2)·6xy2的值.
计算:
(1)5a3b·(-3b)2+(-6ab)2·(-ab)-ab3(-4a)2;
(2).
四、解答题(本大题共7小题,共51分)
阅读下列解答过程,在横线上填上恰当的内容.
(-2 a2b)2·(3a3b2)3=(-6a5b3)6 ①
=(-6)6·(a5)6·(b3)6 ②
=46656a30b18. ③
上述过程中,有无错误?答:__________________.错在第________步,原因是____________________;请写出正确的解答过程.
三角表示3abc,方框表示-4xywz,求×的值.
如果(2x2y)m·(-xynz)3·(3y4z6)的结果是单项式-24xqy10zp,求mn+pq的值.
用18个棱长为a的正方体木块拼成一个长方体,有多重不同的拼法,请列举几种,分别表示所拼成的长方体的体积,你能得到什么结论?(至少写出两种拼法)
已知A,B均为系数是正整数的单项式,且A,B之积为,试写出三组符合条件的单项式.
(1)已知(2)(-3)(5)=-30,求m+n的值.
(2)已知=2,=3,求-的值.
20.若1+2+3++n=m,求()() ()()的值.
参考答案
1.【答案】C
2.【答案】B
3.【答案】D
4.【答案】B
5.【答案】A
6.【答案】C
7.【答案】B
8.【答案】1.2×1013
9.【答案】3.6×107 cm 3
10.【答案】解:(1)原式=;
(2)原式=
=;
(3)原式=
=;
(4)原式=
=.
11.【答案】解:(2x3y2) (-3xmy3) (5x2yn),
=-30xm+5yn+5,
=-30x6y8,
∴m+5=6,n+5=8,即m=1,n=3,
则m+n=4.
12.【答案】解:由题意得:,
解得,
原式=-4x2y2·y2 (6xy2)
=-4x2y4 (6xy2)
=-24x3y6,
把x=-2,y=-1代入得:
=-24×(-2)3×(-1)6
=-24×(-8)×1
=192.
13.【答案】解:(1)原式=
=.
(2)原式=
=
=.
14.【答案】解:
答:有错,错在第①步原因是:运算顺序错了;
正确的过程是:
(-2a2b)2·(3a3b2)3
=(4a4b2)·(27a9b6)
=108a13b8
15.【答案】解:
=
=
=.
16.【答案】解:∵(2x2y)m·(-xynz)3·(3y4z6)
=(2mx2mym)·(-x3y3nz3)·(3y4z6)
=-2m×3x2m+3ym+3n+4z9
=-24xqy10zp,
∴2m×3=24,2m+3=q,m+3n+4=10,p=9,
∴m=3,n=1,p=9,q=9,
∴mn+pq=3×1+9×9=3+81=84.
17.【答案】解:拼法不唯一,现列举5种:
(1)底面的长为18a,宽为a,高为a,体积为18a·a·a=18a3;
(2)底边的长为9a,宽为2a,高为a,体积为9a·2a·a=18a3;
(3)底面的长为6a,宽为3a,高为a,体积为6a·3a·a=18a3;
(4)底面的边长都为3a,高为2a,体积为3a·3a·2a=18a3;
可以发现,不管怎样拼,体积总是18a3.
18.【答案】解:答案不唯一.
如:与,2x与,与,与等.
19.【答案】解:(1)因为(2)(-3)(5)=-30=-30,
所以m+5=6,n+5=8,
即m=1,n=3.
所以m+n=4.
(2)因为=2,=3,
所以-=-
=-3=-3
=9-163
=9-48
=-39.
20.【答案】解:因为1+2+3++n=m,
所以()()()()==.
第2页,共2页