3.1圆的对称性
教学目标
【知识与能力】
(1)理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心;
(2)掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题.
【过程与方法】
(1)通过对圆的对称性的理解,培养学生的观察、分析、发现问题和概括问题的能力,促进学生创造性思维水平的发展和提高;
(2)通过对圆心角、弧和弦之间的关系的探究,掌握解题的方法和技巧.
【情感态度价值观】
经过观察、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣.
教学重难点
【教学重点】
对圆心角、弧和弦之间的关系的理解.
【教学难点】
能灵活运用圆的对称性解决有关实际问题,会用圆心角、弧和弦之间的关系解题.
课前准备
多媒体课件
教学过程
一、创设情境,导入新课
问:前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?
(如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴).
问:我们是用什么方法来研究轴对称图形?
生:折叠.
今天我们继续来探究圆的对称性.
问题1:前面我们已经认识了圆,你还记得确定圆的两个元素吗?
生:圆心和半径.
问题2:你还记得学习圆中的哪些概念吗?
忆一忆:
1.圆:平面上到____________等于______的所有点组成的图形叫做圆,其中______为圆心,定长为________.
2.弧:圆上_____叫做圆弧,简称弧,圆的任意一条____的两个端点分圆成两条弧,每一条弧都叫做圆的半径.__________称为优弧,_____________称为劣弧.
3.___________叫做等圆,_________叫做等弧.
4.圆心角:顶点在_____的角叫做圆心角.
二、探究交流,获取新知
知识点一:圆的对称性
1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?
2.大家交流一下:你是用什么方法来解决这个问题的呢?
动手操作:请同学们用自己准备好的圆形纸张折叠:看折痕经不经过圆心?
学生讨论得出结论:我们通过折叠的方法得到圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.
知识点二:垂径定理
按下面的步骤做一做:
1.在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合.
2.得到一条折痕CD.
3.在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足.
4.将纸打开,新的折痕与圆交于另一点B,如上图.
师:老师和大家一起动手.
(教师叙述步骤,师生共同操作)
师:通过第一步,我们可以得到什么?
学生齐声:可以知道:圆是轴对称图形,过圆心的直线是它的对称轴.
师:很好.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?
生:我发现了,AM=BM,,.
师:为什么呢?
生:因为折痕AM与BM互相重合,A点与B点重合.
师:还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系?
师生共析:如下图示,连接OA、OB得到等腰△OAB,即OA=OB.因CD⊥AB,故△OAM与△OBM都是Rt△,又OM为公共边,所以两个直角三角形全等,则AM=BM.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合, 与 重合,与 重合.因此AM=BM,=,=.
师:在上述操作过程中,你会得出什么结论?
生:垂直于弦的直径平分这条弦,并且平分弦所对的弧.
结论:垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧.
例1:如教材69页图3-4,以△OAB的顶点O为圆心的⊙O交AB于点C,D,且AC=BD.求证:OA=OB.
例2:1400多年前,我国隋唐时期建造的赵州石拱桥的桥拱近似于圆弧形,它的跨度为37.02m,拱高(弧的中点到弦的距离,也叫弓形的高)为7.23m.求拱桥所在圆的半径(精确到0.1m).
知识点三:圆的中心对称性.
问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?
让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.
知识点四:同圆或等圆中圆心角、弧、弦之间的关系
做一做:
在等圆⊙O和⊙中,分别作相等的圆心角∠AOB和(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA与重合.你能发现哪些等量关系吗?说一说你的理由.
小红认为,,她是这样想的:
∵半径OA重合,,
∴半径OB与重合,
∵点A与点重合,点B与点重合,
∴与重合,弦AB与弦重合,
∴=,AB=.
生:小红的想法正确吗?同学们交流自己想法,然后得出结论,教师点拨.
结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
问:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?
学生之间交流,谈谈各自想法,教师点拨.
结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
例3:如书本71页图3-11,AB与DE是⊙O的两条直径,C是⊙O上一点,AC∥DE.求证:
(1)弧AD=弧CE;
(2)BE=EC.
知识点五:圆心角的度数与它所对弧的度数之间的关系
思考:(1)把顶点在圆心的周角等分成360份,每份圆心角的度数是多少?
(2)把顶点在圆心的周角等分成360份时,整个园被分成了多少份?每一份的弧是否
相等?为什么?
师:整个圆的叫做1°的弧.1°的圆心角所对的弧是多少度;反之,1°的弧所对的圆心角是多少度.圆心角与它所对的弧有什么关系?
生:1°的圆心角所对的弧是1°;1°的弧所对的圆心角是1°.
结论:圆心角的度数与它所对弧的度数相等.
例4:如书本73页图3-14,OA,OC是⊙O中两条垂直的直径,D是⊙O上的一点.连接AD并延长与OC的延长线相交于点B,∠B=25°.求弧AD,弧CD的度数.
例5:如书本73页图3-15,在⊙O中,弦AB所对的劣弧为圆的,圆的半径为2cm,求AB的长.
三、随堂练习
1.日常生活中的许多图案或现象都与圆的对称性有关,试举几例.
2.利用一个圆及其若干条弦分别设计出符合下列条件的图案:
(1)是轴对称图形但不是中心对称图形;
(2)是中心对称图形但不是轴对称图形;
(3)既是轴对称图形又是中心对称图形.
3.已知,A,B是⊙O上的两点,∠AOB=120°,C是的中点,试确定四边形OACB的形状,并说明理由.
四、自我小结,获取感悟
1.对自己说,你在本节课中学习了哪些知识点?有何收获?
2.对同学说,你有哪些学习感悟和温馨提示?
3.对老师说,你还有哪些困惑?