中小学教育资源及组卷应用平台
湘教版八年级2021-2022期末模拟练习4
姓名:__________班级:__________考号:__________总分__________
1 、选择题(本大题共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
(2016年湖南省湘潭市 )若分式的值为0,则x=( )
A.﹣1 B.1 C.±1 D.0
(2016年浙江省宁波市)使二次根式有意义的x的取值范围是( )
A.x≠1 B.x>1 C.x≤1 D.x≥1
(2020年贵州省毕节市)将一幅直角三角板(,,,点在边上)按图中所示位置摆放,两条斜边为,,且,则等于( )
A. B. C. D.
(2021年山东省临沂市)不等式的解集在数轴上表示正确的是( )
A. B.
C. D.
如图,已知B、E、C、F在同一条直线上,BE=CF,AB∥DE,则下列条件中,不能判断△ABC≌△DEF的是( )
A.AB=DE B.∠A=∠D C.AC∥DF D.AC=DF
(2017年山东省聊城市 )如果解关于x的分式方程﹣=1时出现增根,那么m的值为( )
A.﹣2 B.2 C.4 D.﹣4
(2019年湖南省张家界市)如图,在△ABC中,∠C=90°,AC=8,DC=AD,BD平分∠ABC,则点D到AB的距离等于( )
A.4 B.3 C.2 D.1
(2021年山东省济南市)实数,在数轴上的对应点的位置如图所示,则下列结论正确的是( )
A. B. C. D.
(2021年吉林省长春市)在中,,.用无刻度的直尺和圆规在BC边上找一点D,使为等腰三角形.下列作法不正确的是( )
A.B.
C.D.
(2018年山东省滨州市)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA.OB上异于点O的动点,则△PMN周长的最小值是( )
A. B. C.6 D.3
1 、填空题(本大题共8小题,每小题3分,共24分)
某正数的平方根为和,则这个数为 .
三角形的三边长分别为5,1+2x,8,则x的取值范围是_____________ .
计算:= .
如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于点D,如果BC=10cm,那么△BCD的周长是_____________ cm.
如图,已知,,AC=AD.给出下列条件: ①AB=AE;②BC=ED;③;④ .其中能使的条件为__________ (注:把你认为正确的答案序号都填上).
(2014年江苏省泰州市)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于
若不等式组的正整数解只有三个,则m的取值范围是 .
如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为 .
1 、解答题(本大题共8小题,共66分)
计算:3﹣+﹣.
(2017年宁夏)解不等式组:.
(2020年四川省自贡市)先化简,再求值:,其中为不等式组的整数解.
(2016年湖南省常德市 )某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?
已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.
(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由.
(2021年辽宁省本溪市、辽阳市、葫芦岛市)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.
(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?
(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?
(2021年北京市)《淮南子 天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点处立一根杆,在地面上沿着杆的影子的方向取一点,使两点间的距离为10步(步是古代的一种长度单位),在点处立一根杆;日落时,在地面上沿着点处的杆的影子的方向取一点,使两点间的距离为10步,在点处立一根杆.取的中点,那么直线表示的方向为东西方向.
(1)上述方法中,杆在地面上的影子所在直线及点的位置如图所示.使用直尺和圆规,在图中作的中点(保留作图痕迹);
(2)在如图中,确定了直线表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线表示的方向为南北方向,完成如下证明.
证明:在中,______________,是的中点,
(______________)(填推理的依据).
∵直线表示的方向为东西方向,
∴直线表示的方向为南北方向.
(2014年重庆市(A卷))如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.
求证:①ME⊥BC;②DE=DN.
答案解析
1 、选择题
【考点】分式的值为零的条件.
【分析】根据分式的值为零的条件可以求出x的值.
解:由分式的值为零的条件得x﹣1=0,x+1≠0,解得,x=1.
故选B.
【点评】此题考查分式的值为零的问题,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
【考点】二次根式有意义的条件.
【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.
解:由题意得,x﹣1≥0,
解得x≥1,
故选:D.
【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型。
【考点】平行线的性质,三角形外角性质
【分析】根据平行线的性质可得∠1=∠F=45°,再根据三角形内角与外角的关系可得∠1的度数.
解:如图,
∵,
∴∠1=∠F=45°,
又∵,
∴∠B=30°,
∴,
故选:B.
【点评】此题主要考查了平行线的性质以及三角形外角性质的应用,关键是掌握两直线平行,同位角相等.
【考点】解一元一次不等式以,在数轴上表示不等式的解集
【分析】求出不等式的解集,再根据“大于向右,小于向左,不包括端点用空心,包括端点用实心”的原则将解集在数轴上表示出来.
解:解不等式,
去分母得:,
去括号得:,
移项合并得:,
系数化为得:,
表示在数轴上如图:
故选:B.
【点评】本题考查的是解一元一次不等式以及在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
【考点】全等三角形的判定.
【分析】首先根据等式的性质可得BC=EF,再根据平行线的性质可得∠A=∠DEF,再分别添加四个选项中的条件,结合全等三角形的判定定理进行分析即可.
解:∵BE=CF,
∴BE+EC=CF+EC,
即BC=EF,
∵AB∥DE,
∴∠A=∠DEF,
A.添加AB=DE,可利用SAS判定△ABC≌△DEF,故此选项不合题意;
B、添加∠A=∠D,可利用AAS判定△ABC≌△DEF,故此选项不合题意;
C、添加AC∥DF,可得∠ACB=∠F,可利用ASA判定△ABC≌△DEF,故此选项不合题意;
D、添加AC=DF,不能判定△ABC≌△DEF,故此选项符合题意;
故选:D.
【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA.AAS、HL.
注意:AAA.SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【考点】 分式方程的增根.
【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.
解:﹣=1,
去分母,方程两边同时乘以x﹣2,得:
m+2x=x﹣2,
由分母可知,分式方程的增根可能是2,
当x=2时,m+4=2﹣2,
m=﹣4,
故选D.
【点评】本题考查了分式方程的解,注:分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.
【考点】角平分线的性质
【分析】过点D作DE⊥AB于E,求出CD,再根据角平分线上的点到角的两边的距离相等解答.
解:如图,过点D作DE⊥AB于E,
∵AC=8,DC=AD,
∴CD=8×=2,
∵∠C=90°,BD平分∠ABC,
∴DE=CD=2,
即点D到AB的距离为2.
故选:C.
【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.
【考点】数轴与实数
【分析】根据数轴可得,由此可排除选项.
解:由数轴可得,
∴,故A选项错误;,故B选项正确;,故C选项错误;,故D选项错误;
故选B.
【点评】本题主要考查数轴及实数的运算,熟练掌握数轴上数的表示及实数的运算是解题的关键.
【考点】作图 基本作图
【分析】利用直角三角形的性质、中垂线的性质、角平分线的尺规作图逐一判断即可得.
解:A.此作图是作∠BAC平分线,在中,,,无法得出为等腰三角形,此作图不正确,符合题意;
B.此作图可直接得出CA=CD,即为等腰三角形,此作图正确,不符合题意;
C.此作图是作AC边的中垂线,可直接得出AD=CD,此作图正确,不符合题意;
D.此作图是作BC边的中垂线,可知AD是BC上的中线,为等腰三角形,此作图正确,不符合题意;
故选:A.
【点评】本题主要考查作图 基本作图,解题的关键是掌握直角三角形的性质、中垂线的性质、角平分线的尺规作图.
【考点】轴对称﹣最短路线问题,含30度的直角三角形
【分析】作P点分别关于OA.OB的对称点C、D,连接CD分别交OA.OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.
解:作P点分别关于OA.OB的对称点C、D,连接CD分别交OA.OB于M、N,如图,
则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
∴此时△PMN周长最小,
作OH⊥CD于H,则CH=DH,
∵∠OCH=30°,
∴OH= OC= ,
CH=OH=,
∴CD=2CH=3.
故选:D.
【点评】本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.
1 、填空题
【考点】平方根.
【分析】由于一个正数有两个平方根,它们互为相反数,由此即可得到关于a的方程,解方程即可解决问题.
解:由题意,得:,
解得:a=5,
则=1,
则这个数为:12=1,
故答案为:1.
【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数,解决本题的关键是熟记平方根的定义.
【考点】三角形三边关系.
【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.
解:由题意,有8﹣5<1+2x<8+5,
解得:1<x<6.
【点评】考查了三角形的三边关系,还要熟练解不等式.
【考点】二次根式的乘除法.
【分析】本题直接运用二次根式的除法法则进行计算即可.
解:原式===3.
故答案为:3.
【点评】注意运用二次根式的乘除法法则时,正反运用的限制条件.
【考点】线段垂直平分线的性质;等腰三角形的性质.
【分析】连接BD,根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,然后求出△BCD的周长=BC+AC,代入数据计算即可得解.
解:如图,连接BD.
∵DE是AB的垂直平分线,
∴AD=BD,
∴△BCD的周长=BC+BD+CD=BC+AD+CD=BC+AC,
∵AC=16cm,BC=10cm,
∴△BCD的周长=10+16=26cm.
故答案为:26.
【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.
【考点】全等三角形的判定
【分析】由∠CAE=∠DAB,得∠CAB=∠DAE;则△CAB和△DAE中,已知的条件有:∠CAB=∠DAE,CA=AD;要判定两三角形全等,只需添加一组对应角相等或AE=AB即可.
解:∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;
①∵AB=AE,∠CAB=∠DAE,AC=AD,∴△ABC≌△AED(SAS),故①正确;
②∵BC=ED,AC=AD,而∠CAB和∠DAE不是相等两边的夹角,∴不能判定△ABC和△AED是否全等,故②错误;
③∵∠C=∠D,AC=AD,∠CAB=∠DAE,∴△ABC≌△AED(ASA),故③正确;
④∵∠B=∠E,∠CAB=∠DAE,AC=AD,∴△ABC≌△AED(AAS),故④正确.
故答案为:①③④.
【点评】本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
【考点】分式的化简求值,完全平方公式
【分析】原式通分并利用同分母分式的加法法则计算,把已知等式变形后代入计算即可求出值.
解:∵a2+3ab+b2=0,
∴a2+b2=﹣3ab,
∴原式===﹣3.
故答案为﹣3.
【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
【考点】一元一次不等式组的整数解.
【分析】首先解不等式组,根据不等式组只有三个正整数解,即可确定m的范围.
解:,
解①得x>2,
解②得:x<m.
则不等式组的解集是:2<x<m.
则正整数解是3,4,5.
则m的范围是:5<m≤6.
故答案是:5<m≤6.
【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
【考点】翻折变换(折叠问题);等腰三角形的性质.
【分析】由题意可得点P是△ABC的内心,连接AP,则AP平分∠BAC,设∠A=2x,分别表示出∠PBC,∠PCD,在△APD中利用三角形的内角和为180°,可得出x的值,继而得出答案.
解:连接AP,
∵P为其底角平分线的交点,
∴点P是△ABC的内心,
∴AP平分∠BAC,
∵AB=AC,
∴∠ABC=∠ACB,
设∠A=2x,则∠DAP=x,∠PBC=∠PCB=45°﹣x,
∵DA=DP,
∴∠DAP=∠DPA,
由折叠的性质可得:∠PDC=∠PBC=45°﹣x,
则∠ADP=180°﹣∠PDC=135°+x,
在△ADP中,∠DAP+∠DPA+∠ADP=180°,即x+x+135°+x=180°,
解得:x=18,
则∠A=2x=36°.
故答案为:36°.
【点评】本题考查了翻折变换的知识,解答本题的关键是判断出点P是三角形的内心,注意熟练掌握三角形的内角和定理,难度一般.
1 、解答题
【考点】二次根式的加减法
【分析】先进行二次根式的化简,然后合并.
解:原式=3﹣2+﹣3
=﹣.
【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及合并.
【考点】解一元一次不等式组.
【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
解:,
由①得:x≤8,
由②得:x>﹣3,
则不等式组的解集为﹣3<x≤8.
【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
【考点】分式的化简求值,一元一次不等式组的整数解
【分析】根据分式的运算法则化简式子,再解不等式组得到不等式组的整数解,代入即可.
解:,
解不等式组可得,
∵,即,且为整数,
∴,代入.
【点睛】本题考查分式的化简求值、不等式组的整数解,解题的关键是取值时,注意分式的分母不能为0.
【考点】分式方程的应用;一元一次不等式的应用.
【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,再根据等量关系:第二批进的件数=×第一批进的件数可得方程;
(2)设第二批衬衫每件售价y元,由利润=售价﹣进价,根据这两批衬衫售完后的总利润不低于1950元,可列不等式求解.
解:(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,根据题意可得:,
解得:x=150,
经检验x=150是原方程的解,
答:第一批T恤衫每件进价是150元,第二批每件进价是140元,
(件),(件),
答:第一批T恤衫进了30件,第二批进了15件;
(2)设第二批衬衫每件售价y元,根据题意可得:
30×+15(y﹣140)≥1950,
解得:y≥170,
答:第二批衬衫每件至少要售170元.
【点评】本题考查分式方程的应用,解题的关键是学会设未知数、找等量关系、列出方程解决问题,注意分式方程必须检验,属于中考常考题型.
【考点】全等三角形的判定与性质;角平分线的性质;等腰三角形的判定.
【分析】(1)由OB=OC,即可求得∠OBC=∠OCB,又由,锐角△ABC的两条高BD、CE相交于点O,根据三角形的内角和等于180°,即可证得△ABC是等腰三角形;
(2)首先连接AO并延长交BC于F,通过证△AOB≌△AOC(SSS),得到∠BAF=∠CAF,即点O在∠BAC的角平分线上.
(1)证明:∵OB=OC,
∴∠OBC=∠OCB,
∵锐角△ABC的两条高BD、CE相交于点O,
∴∠BEC=∠CDB=90°,
∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,
∴180°﹣∠BEC﹣∠BCE=180°﹣∠CDB﹣∠CBD,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形;
(2)解:点O在∠BAC的角平分线上.
理由:连接AO并延长交BC于F,
在△AOB和△AOC中,
∴△AOB≌△AOC(SSS).
∴∠BAF=∠CAF,
∴点O在∠BAC的角平分线上.
【点评】此题考查了等腰三角形的性质与判定,以及角平分线的判定等知识.此题难度不大,注意等角对等边与三线合一定理的应用.
【考点】二元一次方程组的应用,一元一次不等式的应用
【分析】(1)设每本手绘纪念册x元,每本图片纪念册y元,根据题意列出二元一次方程组,求解即可;
(2)设购买手绘纪念册a本,则购买图片纪念册本,根据题意列出不等式,求解不等式即可.
解:(1)设每本手绘纪念册x元,每本图片纪念册y元,
根据题意可得:,
解得,
答:每本手绘纪念册35元,每本图片纪念册25元;
(2)设购买手绘纪念册a本,则购买图片纪念册本,根据题意可得:
,
解得,
∴最多能购买手绘纪念册10本.
【点评】本题考查二元一次方程组的应用、不等式的实际应用,根据题意列出方程组和不等式是解题的关键.
【考点】等腰三角形的性质,作图-基本作图
【分析】(1)分别以点A.C为圆心,大于AC长的一半为半径画弧,交于两点,然后连接这两点,与AC的交点即为所求点D;
(2)由题意及等腰三角形的性质可直接进行作答.
解:(1)如图所示:
(2)证明:在中,,是的中点,
(等腰三角形的三线合一)(填推理的依据).
∵直线表示的方向为东西方向,
∴直线表示的方向为南北方向;
故答案为,等腰三角形的三线合一.
【点评】本题主要考查垂直平分线的尺规作图及等腰三角形的性质,熟练掌握垂直平分线的尺规作图及等腰三角形的性质是解题的关键.
【考点】全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质
【分析】(1)通过角的转换和等腰直角三角形的性质,得到∠BAE=∠CAF和∠B=∠FCA,从而ASA证明△ABF≌△ACF,根据全等三角形对应边相等得到结论.
(2)①过E点作EG⊥AB于点G,通过证明EG是BM的垂直平分线就易得出结论.
②通过证明Rt△AMC≌Rt△EMC和△ADE≌△CDN来证明结论.
证明:(1)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∵FC⊥BC,
∴∠BCF=90°,
∴∠ACF=90°﹣45°=45°,
∴∠B=∠ACF,
∵∠BAC=90°,FA⊥AE,
∴∠BAE+∠CAE=90°,
∠CAF+∠CAE=90°,
∴∠BAE=∠CAF,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴BE=CF;
(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,
∴HE=BH,∠BEH=45°,
∵AE平分∠BAD,AD⊥BC,
∴DE=HE,
∴DE=BH=HE,
∵BM=2DE,
∴HE=HM,
∴△HEM是等腰直角三角形,
∴∠MEH=45°,
∴∠BEM=45°+45°=90°,
∴ME⊥BC;
②由题意得,∠CAE=45°+×45°=67.5°,
∴∠CEA=180°﹣45°﹣67.5°=67.5°,
∴∠CAE=∠CEA=67.5°,
∴AC=CE,
在Rt△ACM和Rt△ECM中
,,
∴Rt△ACM≌Rt△ECM(HL),
∴∠ACM=∠ECM=×45°=22.5°,
又∵∠DAE=×45°=22.5°,
∴∠DAE=∠ECM,
∵∠BAC=90°,AB=AC,AD⊥BC,
∴AD=CD=BC,
在△ADE和△CDN中,
,
∴△ADE≌△CDN(ASA),
∴DE=DN.
【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)