2021-2022学年北师大版九年级数学下册《2.4二次函数的应用》题型分类训练(附答案)
一.根据实际问题列二次函数关系式
1.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱组成,通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A.y=x2 B.y=﹣x2
C.y=x2 D.y=﹣x2
2.如图,抛物线y=x+2交x轴于点A,B,交y轴于点C,当△ABC纸片上的点C沿着此抛物线运动时,则△ABC纸片随之也跟着移动,设纸片上BC的中点M坐标为(m,n),在此运动过程中,n与m的关系式是( )
A.n=(m﹣)2﹣ B.n=(m﹣)2
C.n=(m﹣)2﹣ D.n=(m﹣)2﹣
3.某畅销书的售价为每本30元,每星期可卖出200本,书城准备开展“读书节活动”,决定降价促销.经调研,如果调整书籍的售价,每降价2元,每星期可多卖出40本.设每件商品降价x元后,每星期售出此畅销书的总销售额为y元,则y与x之间的函数关系为( )
A.y=(30﹣x)(200+40x) B.y=(30﹣x)(200+20x)
C.y=(30﹣x)(200﹣40x) D.y=(30﹣x)(200﹣20x)
4.如图1,是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作抛物线,在如图2所示的平面直角坐标系中,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点C)距球网的水平距离为2.5米,则排球运动路线的函数表达式为( )
A.y=﹣x2﹣x+ B.y=﹣x2+x+
C.y=x2﹣x+ D.y=x2+x+
5.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m.设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是( )
A.y=﹣x2+50x B.y=﹣x2+24x
C.y=﹣x2+25x D.y=﹣x2+26x
6.据省统计局公布的数据,安徽省今年第二季度GDP总值约为7.9千亿元人民币,若我省第四季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是( )
A.y=7.9(1+2x)
B.y=7.9(1﹣x)2
C.y=7.9(1+x)2
D.y=7.9+7.9(1+x)+7.9(1+x)2
7.如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为 .
8.某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:
①每个零件的成本价为40元;
②若订购量不超过100个,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;
③实际出厂单价不能低于51元.
根据以上信息,解答下列问题:
(1)当一次订购量为 个时,零件的实际出厂单价降为51元.
(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).
9.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.
(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.
(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.
二.二次函数的应用
10.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小腾同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列四个结论:其中正确结论的个数是( )
①图象与坐标轴的交点为(﹣1,0)和(3,0);
②当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;
③当x=1时,函数有最大值是4;
④函数与直线y=m有4个公共点,则m的取值范围是0<m<4.
A.1 B.2 C.3 D.4
11.小明周末前往游乐园游玩,他乘坐了摩天轮,摩天轮转一圈,他离地面高度y(m)与旋转时x(s)之间的关系可以近似地用y=﹣x2+bx+c来刻画.如图记录了该摩天轮旋转时x(s)和离地面高度y(m)的三组数据,根据上述函数模型和数据,可以推断出:当小明乘坐此摩天轮离地面最高时,需要的时间为( )
A.172s B.175s C.180s D.186s
12.如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m,两侧距地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞内部顶端离地面的距离为( )
A. B.8 C. D.7.5
13.在中考体育训练期间,小宇对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系式为y=﹣x2+x+,由此可知小宇此次实心球训练的成绩为( )
A.米 B.8米 C.10米 D.2米
14.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h=20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有( )
A.①② B.②③ C.①③④ D.①②③
15.小华酷爱足球运动.一次训练时,他将足球从地面向上踢出,足球距地面的高度h(m)与足球被踢出后经过的时间t(s)之间的关系为h=﹣5t2+12t,则足球距地面的最大高度是 m.
16.某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为 元时,才能使每天所获销售利润最大.
17.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=﹣2x2+4x+1,则喷出水珠的最大高度是 m.
18.某商场经营一种小商品,已知购进时单价是20元.调查发现:当销售单价是30元时,月销售量为280件.而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为 元.
19.如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州历史文化.如图②,“东方之门”的内侧轮廊是由两条抛物线组成的,已知其底部宽度均为80m,高度分别为300m和225m,则在内侧抛物线顶部处的外侧抛物线的水平宽度(AB的长)为 m.
20.如图,杂技团进行杂技表演,一名演员从跷跷板右端A处恰好弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,跳起的演员距点A所在y轴的水平距离为2.5米时身体离地面最高.若人梯到起跳点A的水平距离为4米,则人梯BC的高为 米.
21.某商家准备销售一种防护品,进货价格为每件50元,并且每件的售价不低于进货价.经过市场调查,每月的销售量y(件)与每件的售价x(元)之间满足如图所示的函数关系.
(1)求每月的销售量y(件)与每件的售价x(元)之间的函数关系式;(不必写出自变量的取值范围)
(2)物价部门规定,该防护品每件的利润不允许高于进货价的30%.设这种防护品每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?
22.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床x台.
(1)当x>4时,完成以下两个问题:
①请补全下面的表格:
A型 B型
车床数量/台 x
每台车床获利/万元 10
②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?
(2)当0<x≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.
23.为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.
(1)根据图象信息,求y与x的函数关系式;
(2)求五一期间销售草莓获得的最大利润.
24.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=﹣x2+x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=﹣x2+bx+c运动.
(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);
(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?
(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b的取值范围.
25.某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.
x 40 70 90
y 180 90 30
W 3600 4500 2100
(1)求y关于x的函数解析式(不要求写出自变量的取值范围);
(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;
(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.
26.如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A处,另一端固定在离地面高2米的墙体B处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=﹣x2+bx+c,现测得A,B两墙体之间的水平距离为6米.
(1)直接写出b,c的值;
(2)求大棚的最高处到地面的距离;
(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?
27.某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.
(1)求雕塑高OA.
(2)求落水点C,D之间的距离.
(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.
28.某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量y(万件)与售价x(元/件)的函数关系式为y=.
(1)当售价为60元/件时,年销售量为 万件;
(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少?
(3)若销售该产品的年利润不少于750万元,直接写出x的取值范围.
三.二次函数综合题
29.如图,抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C.直线l与抛物线交于A、D两点,与y轴交于点E,点D的坐标为(4,3).
(1)求抛物线的解析式与直线l的解析式;
(2)若点P是抛物线上的点且在直线l上方,连接PA、PD,求当△PAD面积最大时点P的坐标及该面积的最大值;
(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.
30.如图,在平面直角坐标系xOy中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B,点C的坐标为(﹣2,0),抛物线经过A,B,C三点.
(1)求抛物线的解析式;
(2)直线AD与y轴负半轴交于点D,且∠BAO=∠DAO,求证:OB=OD;
(3)在(2)的条件下,若直线AD与抛物线的对称轴l交于点E,连接BE,在第一象限内的抛物线上是否存在一点P,使四边形BEAP的面积最大?若存在,请求出点P的坐标及四边形BEAP面积的最大值;若不存在,请说明理由.
31.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于点A(,)和点B(4,m).抛物线与x轴的交点分别为H、K(点H在点K的左侧).点F在线段AB上运动(不与点A、B重合),过点F作直线FC⊥x轴于点P,交抛物线于点C.
(1)求抛物线的解析式;
(2)如图1,连接AC,是否存在点F,使△FAC是直角三角形?若存在,求出点F的坐标;若不存在,说明理由;
(3)如图2,过点C作CE⊥AB于点E,当△CEF的周长最大时,过点F作任意直线l,把△CEF沿直线l翻折180°,翻折后点C的对应点记为点Q,求出当△CEF的周长最大时,点F的坐标,并直接写出翻折过程中线段KQ的最大值和最小值.
32.将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.
(1)求抛物线H的表达式;
(2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;
(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.
33.如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c图象过A、B两点.
(1)求二次函数解析式;
(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.
34.已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).
(1)求抛物线的表达式;
(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;
(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使△BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.
35.如图,在平面直角坐标系中,抛物线y=﹣x2+ x+(m>0)与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C,连接BC.
(1)若OC=2OA,求抛物线对应的函数表达式;
(2)在(1)的条件下,点P位于直线BC上方的抛物线上,当△PBC面积最大时,求点P的坐标;
(3)设直线y=x+b与抛物线交于B,G两点,问是否存在点E(在抛物线上),点F(在抛物线的对称轴上),使得以B,G,E,F为顶点的四边形成为矩形?若存在,求出点E,F的坐标;若不存在,说明理由.
36.如图,抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,顶点为D,点B的坐标为(3,0).
(1)填空:点A的坐标为 ,点D的坐标为 ,抛物线的解析式为 ;
(2)当二次函数y=x2+bx+c的自变量x满足m≤x≤m+2时,函数y的最小值为,求m的值;
(3)P是抛物线对称轴上一动点,是否存在点P,使△PAC是以AC为斜边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
37.如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.
(1)求A,B,C三点的坐标;
(2)连接AC,直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;
(3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
38.如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.
(1)求抛物线的解析式;
(2)连接BC,求直线BC的解析式;
(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;
(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
39.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于点A和C(1,0),交y轴于点B(0,3),抛物线的对称轴交x轴于点E,交抛物线于点F.
(1)求抛物线的解析式;
(2)将线段OE绕着点O沿顺时针方向旋转得到线段OE',旋转角为α(0°<α<90°),连接AE′,BE′,求BE′+AE′的最小值;
(3)M为平面直角坐标系中一点,在抛物线上是否存在一点N,使得以A,B,M,N为顶点的四边形为矩形?若存在,请直接写出点N的横坐标;若不存在,请说明理由.
40.如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴相交于A、B、C三点,其中A点坐标为(3,0),B点坐标为(﹣1,0),连接AC、BC.动点P从点A出发,在线段AC上以每秒个单位长度向点C做匀速运动;同时,动点Q从点B出发,在线段BA上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ,设运动时间为t秒.
(1)求b、c的值.
(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?
(3)在线段AC上方的抛物线上是否存在点M,使△MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
41.如图,抛物线y=mx2+(m2+3)x﹣(6m+9)与x轴交于点A、B,与y轴交于点C,已知B(3,0).
(1)求m的值和直线BC对应的函数表达式;
(2)P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;
(3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标.
42.如图,已知抛物线L:y=x2+bx+c经过点A(0,﹣5),B(5,0).
(1)求b,c的值;
(2)连结AB,交抛物线L的对称轴于点M.
①求点M的坐标;
②将抛物线L向左平移m(m>0)个单位得到抛物线L1.过点M作MN∥y轴,交抛物线L1于点N.P是抛物线L1上一点,横坐标为﹣1,过点P作PE∥x轴,交抛物线L于点E,点E在抛物线L对称轴的右侧.若PE+MN=10,求m的值.
参考答案
一.根据实际问题列二次函数关系式
1.解:设抛物线的解析式为:y=ax2,
将B(45,﹣78)代入得:﹣78=a×452,
解得:a=﹣,
故此抛物线钢拱的函数表达式为:y=﹣x2.
故选:B.
2.解:∵抛物线y=x+2交x轴于点A,B,交y轴于点C,
∴点B的坐标为(4,0),点C的坐标为(0,2),
∴BC的中点M坐标为(,),即点M坐标为(2,1).
∵点C沿着此抛物线运动,点M也随之运动,点M的运动轨迹是抛物线,且经过(2,1),(6,﹣1)
∴设抛物线的解析式为y=x2+bx+c,
则有,解得
∴m,n满足,n=m2﹣m+8=(m﹣)2﹣,
故选:D.
3.解:设每本降价x元,则售价为(30﹣x)元,销售量为(200+20x)本,
根据题意得,y=(30﹣x)(200+20x),
故选:B.
4.解:方法一:
0.26+2.24=2.5=(米)
根据题意和所建立的坐标系可知,A(﹣5,),B(0,),C(,0),
设排球运动路线的函数关系式为y=ax2+bx+c,将A、B、C的坐标代入得:
,
解得,a=﹣,b=﹣,c=,
∴排球运动路线的函数关系式为y=﹣x2﹣x+,
故选:A.
方法二:排球运动路线的函数关系式为y=ax2+bx+c,由图象可知,a<0,a、b同号,即b<0,c=,故选:A.
5.解:设饲养室长为xm,占地面积为ym2,
则y关于x的函数表达式是:y=x (50+2﹣x)=﹣x2+26x.
故选:D.
6.解:设平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是:y=7.9(1+x)2.
故选:C.
7.解:如图所示:
∵四边形ABCD是边长为2的正方形,
∴∠A=∠B=90°,AB=2.
∴∠1+∠2=90°,
∵四边形EFGH为正方形,
∴∠HEF=90°,EH=EF.
∴∠1+∠3=90°,
∴∠2=∠3,
在△AHE与△BEF中,
∵,
∴△AHE≌△BEF(AAS),
∴AE=BF=x,AH=BE=2﹣x,
在Rt△AHE中,由勾股定理得:
EH2=AE2+AH2=x2+(2﹣x)2=2x2﹣4x+4;
即y=2x2﹣4x+4(0<x<2),
故答案为:y=2x2﹣4x+4.
8.解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x个,则x=100+=550,
根据实际出厂单价不能低于51元,
因此,当一次订购量为大于等于550个时,每个零件的实际出厂价恰好降为51元.
故答案为:≥550;
(2)当0<x≤100时,P=60
当100<x<550时,P=60﹣0.02(x﹣100)=62﹣
当x≥550时,P=51
所以P=;
(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,
则L=(P﹣40)x=
当x=500时,L=22×500﹣=6000(元);当x=1000时,L=(51﹣40)×1000=11000(元),
因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.
9.解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),
又∵m=162﹣3x,
∴y=(x﹣30)(162﹣3x),
即y=﹣3x2+252x﹣4860,
∵x﹣30≥0,
∴x≥30.
又∵m≥0,
∴162﹣3x≥0,即x≤54.
∴30≤x≤54.
∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).
(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,
所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
∵500>432,
∴商场每天销售这种商品的销售利润不能达到500元.
二.二次函数的应用
10.解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,
∴①是错误的;
②根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此②是正确的;
③由图象可知,当x<﹣1时,函数值随x的减小而增大,当x>3时,函数值随x的增大而增大,均存在大于顶点坐标的函数值,故当x=1时的函数值4并非最大值,故③错误.
④由图象可知,函数与直线y=m有4个公共点,则m的取值范围是0<m<4,故④正确.
故选:B.
11.解:把(160,60),(190,67.5)分别代入y=﹣x2+bx+c得,
,
解得,
∴抛物线的解析式为y=﹣x2+9x﹣700,
∴该铅球飞行到最高点时,需要的时间为﹣=180(s),
故选:C.
12.解:建立如图所示的平面直角坐标系,
由题意可知各点的坐标,A(﹣4,0),B(4,0),D(﹣3,4).
设抛物线的解析式为:y=ax2+c(a≠0),把B(4,0),D(﹣3,4)代入,得:
,
解得:,
∴该抛物线的解析式为:y=﹣x2+,
则C(0,).
∴这个门洞内部顶端离地面的距离为m,
故选:A.
13.解:当y=0时,即y=﹣x2+x+=0,
解得:x1=﹣2(舍去),x2=8,
所以小宇此次实心球训练的成绩为8米,
故选:B.
14.解:由图象可知,点(0,0),(6,0),(3,40)在抛物线上,顶点为(3,40),
设函数解析式为h=a(t﹣3)2+40,
将(0,0)代入得:0=a(0﹣3)2+40,
解得:a=﹣,
∴h=﹣(t﹣3)2+40.
①∵顶点为(3,40),
∴小球抛出3秒时达到最高点,故①正确;
②小球从抛出到落地经过的路程应为该小球从上升到落下的长度,故为40×2=80m,故②正确;
③令h=20,则20=﹣(t﹣3)2+40,
解得t=3±,故③错误;
④令t=2,则h=﹣(2﹣3)2+40=m,故④错误.
综上,正确的有①②.
故选:A.
15.解:∵h=﹣5t2+12t,
a=﹣5,b=12,c=0,
∴足球距地面的最大高度是:=7.2m,
故答案为:7.2.
16.解:设销售单价定为x元(x≥9),每天所获利润为y元,
则y=[20﹣4(x﹣9)] (x﹣8)
=﹣4x2+88x﹣448
=﹣4(x﹣11)2+36,
所以将销售定价定为11元时,才能使每天所获销售利润最大,
故答案为11.
17.解:∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3,
∴当x=1时,y有最大值为3,
∴喷出水珠的最大高度是3m,
故答案为:3.
18.解:设销售单价为x元时,销售利润最大,
单价利润为(x﹣20)元,
销售数量为280﹣(x﹣30) 10,
∴利润总额为y=(x﹣20) [280﹣(x﹣30) 10],
化简得:y=﹣10x2+780x﹣11600,
配方得:y=﹣10(x﹣39)2+3160,
当单价为39元时,有最大利润3610元,
故答案为:39.
19.解:以底部所在的直线为x轴,以线段AB的垂直平分线所在的直线为y轴建立平面直角坐标系:
∴C(﹣40,0),D(40,0),
设外侧抛物线的解析式为y=a(x+40)(x﹣40),将(0,300)代入,得:
300=a(0+40)(0﹣40),
解得:a=﹣,
∴内侧抛物线的解析式为y=﹣x2+300,
将y=225代入得:﹣x2+300=225,
解得:x=±20,
∴A(﹣20,225),B(20,225),
∴AB=40,
∴在内侧抛物线顶部处的外侧抛物线的水平宽度(AB的长)为40m.
故答案为:40.
20.解:∵跳起的演员距点A所在y轴的水平距离为2.5米时身体离地面最高.
∴抛物线的对称轴为x=2.5,
∴x=﹣=2.5,解得:b=3,
∴抛物线为y=﹣x2+3x+1,
∵人梯到起跳点A的水平距离是4,
∴点B的横坐标为4,
则yB=﹣×42+3×4+1=3.4,即BC=3.4米.
故答案为:3.4.
21.解:(1)由图象可知每月销售量y(件)与售价x(元)之间为一次函数关系,设其函数关系式为y=kx+b(k≠0,x≥50),
将(60,600),(80,400)代入,得:
解得:,
∴每月销售y(件)与售价x(元)的函数关系式为y=﹣10x+1200;
(2)由题意得:
w=(﹣10x+1200)(x﹣50)
=﹣10x2+1700x﹣60000
=﹣10(x﹣85)2+12250,
∵﹣10<0,
∴当x≤85时,w随x的增大而增大,
∵该防护品的每件利润不允许高于进货价的30%,
∴x≤50×(1+30%),即x≤65,
∴当x=65时,w取得最大值:最大值=﹣10(65﹣85)2+12250=8250.
∴售价定为65元可获得最大利润,最大利润是8250元.
22.解:(1)①由题意得,生产并销售B型车床x台时,生产并销售A型车床(14﹣x)台,当x>4时,每台B型车床可以获利[17﹣(x﹣4)]=(21﹣x)万元.
故答案应为:14﹣x,21﹣x;
②由题意得方程10(14﹣x)+70=[17﹣(x﹣4)]x,
解得x1=10,x2=21(舍去),
答:生产并销售B型车床10台;
(2)当0<x≤4时,总利润W=10(14﹣x)+17x,
整理得,W=7x+140,
∵7>0,
∴当x=4时总利润W最大为7×4+140=168(万元);
当x>4时,总利润
W=10(14﹣x)+[17﹣(x﹣4)]x,
整理得W=﹣x2+11x+140,
∵﹣1<0,
∴当x=﹣=5.5时总利润W最大,
又由题意x只能取整数,
∴当x=5或x=6时,
∴当x=5时,总利润W最大为﹣52+11×5+140=170(万元)
又∵168<170,
∴当x=5或x=6时,总利润W最大为170万元,
而14﹣5=9,
14﹣6=8,
答:当生产并销售A,B两种车床各为9台、5台或8台、6台时,使获得的总利润W最大;最大利润为170万元.
23.解:(1)当8≤x≤32时,设y=kx+b(k≠0),
则,解得:,
∴当8≤x≤32时,y=﹣3x+216,
当32<x≤40时,y=120,
∴y=.
(2)设利润为W,则:
当8≤x≤32时,W=(x﹣8)y=(x﹣8)(﹣3x+216)=﹣3(x﹣40)2+3072,
∵开口向下,对称轴为直线x=40,
∴当8≤x≤32时,W随x的增大而增大,
∴x=32时,W最大=2880,
当32<x≤40时,W=(x﹣8)y=120(x﹣8)=120x﹣960,
∵W随x的增大而增大,
∴x=40时,W最大=3840,
∵3840>2880,
∴最大利润为3840元.
24.解:(1)由题意可知抛物线C2:y=﹣x2+bx+c过点(0,4)和(4,8),将其代入得:
,解得:,
∴抛物线C2的函数解析式为:y=﹣x2+x+4;
(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意得:
﹣m2+m+4﹣(﹣m2+m+1)=1,
整理得:(m﹣12)(m+4)=0,
解得:m1=12,m2=﹣4(舍去),
故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米;
(3)C1:y=﹣x2+x+1=﹣(x﹣7)2+,
当x=7时,运动员到达坡顶,
即﹣×72+7b+4>3+,
解得:b>.
25.解:(1)设y=kx+b,由题意有:
,
解得,
所以y关于x的函数解析式为y=﹣3x+300;
(2)由(1)W=(﹣3x+300)(x﹣a),
又由表知,把x=40,W=3600,代入上式可得关系式
得:3600=(﹣3×40+300)(40﹣a),
∴a=20,
∴W=(﹣3x+300)(x﹣20)=﹣3x2+360x﹣6000=﹣3(x﹣60)2+4800,
所以售价x=60时,周销售利润W最大,最大利润为4800;
(3)由题意W=﹣3(x﹣100)(x﹣20﹣m)(x≤55),
其对称轴x=60+>60,
∴0<x≤55时,W的值随x增大而增大,
∴只有x=55时周销售利润最大,
∴4050=﹣3(55﹣100)(55﹣20﹣m),
∴m=5.
26.解:(1)b=,c=1.
(2)由y==,
可知当x=时,y有最大值,
故大棚最高处到地面的距离为米;
(3)令y=,则有=,
解得x1=,x2=,
又∵0≤x≤6,
∴大棚内可以搭建支架的土地的宽为6﹣=(米),
又大棚的长为16米,
∴需要搭建支架部分的土地面积为16×=88(平方米),
故共需要88×4=352(根)竹竿,
答:共需要准备352根竹竿.
27.解:(1)当x=0时,y=﹣(0﹣5)2+6=,
∴点A的坐标为(0,),
∴雕塑高m.
(2)当y=0时,﹣(x﹣5)2+6=0,
解得:x1=﹣1(舍去),x2=11,
∴点D的坐标为(11,0),
∴OD=11m.
∵从A点向四周喷水,喷出的水柱为抛物线,且形状相同,
∴OC=OD=11m,
∴CD=OC+OD=22m.
(3)当x=10时,y=﹣(10﹣5)2+6=,
∴点(10,)在抛物线y=﹣(x﹣5)2+6上.
又∵≈1.83>1.8,
∴顶部F不会碰到水柱.
28.解:(1)当x=60时,代入y=﹣x+80中,得y=﹣60+80=20(万件),
故答案为:20.
(2)设销售该产品的年利润为W万元,
当40≤x<60时,W=( x﹣30)(﹣2x+140)=﹣2(x﹣50)2+800,
∵﹣2<0,
∴当x=50时,Wmax=800,
当60≤x≤70时,W=(x﹣30)(﹣x+80)=﹣(x﹣55)2+625,
∵﹣1<0,
当x>55时,W随x的增大而减小,
∵60≤x≤70,
∴当x=60时,Wmax=600,
∵800>600,
∴当x=50时,Wmax=800
∴当售价为50元/件时,年销售利润最大,最大为800万元.
(3)45≤x≤55,
理由如下:由(2)得:
当40≤x<60时,W=( x﹣30)(﹣2x+140)=﹣2(x﹣50)2+800,
对称轴为直线x=50,抛物线开口向下,
(x﹣30)(﹣2x+140)=750,
解得:x1=45,x2=55,
由函数的性质可知:45≤x≤55.
三.二次函数综合题
29.解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,
∴设抛物线的解析式为y=a(x+2)(x﹣6),
∵D(4,3)在抛物线上,
∴3=a(4+2)×(4﹣6),
解得a=﹣,
∴抛物线的解析式为y=﹣(x+2)(x﹣6)=﹣x2+x+3,
∵直线l经过A(﹣2,0)、D(4,3),
设直线l的解析式为y=kx+m(k≠0),
则,
解得,,
∴直线l的解析式为y=x+1;
(2)如图1中,过点P作PE∥y轴交AD于点E.设P(m,﹣m2+m+3),则E(m,m+1).
∵S△PAD= (xD﹣xA) PE=3PE,
∴PE的值最大值时,△PAD的面积最大,
∵PE=﹣m2+m+3﹣m﹣1=﹣m2+m+2=﹣(m﹣1)2+,
∵﹣<0,
∴m=1时,PE的值最大,最大值为,此时△PAD的面积的最大值为,P(1,).
(3)如图2中,将线段AD绕点A逆时针旋转90°得到AT,则T(﹣5,6),
设DT交y轴于点Q,则∠ADQ=45°,
∵D(4,3),
∴直线DT的解析式为y=﹣x+,
∴Q(0,),
作点T关于AD的对称点T′(1,﹣6),
则直线DT′的解析式为y=3x﹣9,
设DQ′交y轴于点Q′,则∠ADQ′=45°,
∴Q′(0,﹣9),
综上所述,满足条件的点Q的坐标为(0,)或(0,﹣9).
30.解:(1)令y=0,则﹣x+3=0,解得x=6,
令x=0,则y=3,
∴A(6,0),B(0,3),
设抛物线的解析式为y=ax2+bx+c,
把A,B,C三点坐标代入解析式,得:
,
解得:,
∴抛物线的解析式为y=x2+x+3;
(2)证明:∵在平面直角坐标系xOy中,
∴∠BOA=∠DOA=90°,
在△BOA和△DOA中,
,
∴△BOA≌△DOA (ASA),
∴OB=OD,
(3)存在,理由如下:
如图,过点E作EM⊥y轴于点M,
∵y=x2+x+3=(x﹣2)2+4,
∴抛物线的对称轴是直线x=2,
∴E点的横坐标是2,即EM=2,
∵B(0,3),
∴OB=OD=3,
∴BD=6,
∵A(6,0),
∴OA=6,
∴S△ABE=S△ABD﹣S△DBE=×6×6﹣×6×2=12,
设点P的坐标为(t,t2+t+3),
连接PA,PB,过点P作PN⊥x轴于点H1,交直线AB于点N,过点B作H2⊥PN于点H2,
∴N(t,﹣t+3),
∴PN=t2+t+3﹣(﹣t+3)=t2+t,
∵AH1+BH2=OA=6,S△ABP=S△NBP+S△ANP=PN BH2+PN AH1=PN OA,
∴S△ABP=×6(t2+t)=(t﹣3)2+,
∵<0,抛物线开口向下,函数有最大值,
∴当t=3时,△BPA面积的最大值是,此时四边形BEAP的面积最大,
∴四边形BEAP的面积最大值为+12=,
∴当P点坐标是(3,)时,四边形BEAP面积的最大值是.
31.解:(1)∵直线y=x+2过点B(4,m),
∴m=4+2,
解得m=6,
∴B(4,6),
把点A和B代入抛物线的解析式,得:
,
解得,
∴抛物线的解析式为;
(2)存在点F,使△FAC为直角三角形,
设F(n,n+2),直线AB与x轴交于M,则M(﹣2,0),直线AB与y轴交于点N,则N(0,2),
∵FC∥y轴,
∴C(n,2n2﹣8n+6),
∵直线y=x+2与x轴的交点为M(﹣2,0),与y轴交点为N(0,2),
∴OM=ON=2,
∴∠ONM=45°,
∵FC∥y轴,
∴∠AFC=∠ONM=45°,
若△FAC为直角三角形,则分两种情况讨论:
(i)若点A为直角顶点,即∠FAC=90°,
过点A作AD⊥FC于点D,
在Rt△FAC中,
∵∠AFC=45°,
∴AF=AC,
∴DF=DC,
∴AD=FC,
∵n=,
化简得:2n2﹣7n+3=0,
解得:n1=3,(与A重合舍去),
∴F(3,5),
(ii)若点C为直角顶点,即∠FCA=90°,则AC∥x轴,
在Rt△FAC中,
∵∠AFC=45°,
∴AC=CF,
∴n=(n+2)﹣(2n2﹣8n+6,
化简得:4n2﹣16n+7=0,
解得:,(舍去),
∴F(,),
综上所述:存在点 F(3,5)或(,),使△FAC为直角三角形;
(3)设F(c,c+2),
∵FC∥y轴,
∴C(c,2c2﹣8c+6),
在Rt△FEC中,
∵∠AFC=45
∴EF=EC=CF sin∠AFC=,
∴当CF最大时,△FEC的周长最大,
∵CF=(c+2)﹣(2c2﹣8c+6)=﹣2c2+9c﹣4=,
又∵﹣2<0,
∴当时,CF最大即△FEC的周长最大,此时F点坐标为,
折叠过程中,当K,F,Q共线,且K和Q在F两侧时,KQ的最大,K和Q在F同侧时,KQ的最小,
∵CF=,
由(1)知点K的坐标为(3,0),
∴KF=,
∴KQ的最大值为CF+KF=,KQ的最小值为CF﹣KF=.
32.解:(1)由题意得抛物线的顶点坐标为(﹣1,4),
∴抛物线H:y=a(x+1)2+4,
将A(﹣3,0)代入,得:a(﹣3+1)2+4=0,
解得:a=﹣1,
∴抛物线H的表达式为y=﹣(x+1)2+4;
(2)如图1,由(1)知:y=﹣x2﹣2x+3,
令x=0,得y=3,
∴C(0,3),
设直线AC的解析式为y=mx+n,
∵A(﹣3,0),C(0,3),
∴,
解得:,
∴直线AC的解析式为y=x+3,
设P(m,﹣m2﹣2m+3),则E(m,m+3),
∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,
∵﹣1<0,
∴当m=﹣时,PE有最大值,
∵OA=OC=3,∠AOC=90°,
∴△AOC是等腰直角三角形,
∴∠ACO=45°,
∵PD⊥AB,
∴∠ADP=90°,
∴∠ADP=∠AOC,
∴PD∥OC,
∴∠PEF=∠ACO=45°,
∵PF⊥AC,
∴△PEF是等腰直角三角形,
∴PF=EF=PE,
∴S△PEF=PF EF=PE2,
∴当m=﹣时,S△PEF最大值=×()2=;
(3)①当AC为平行四边形的边时,则有PQ∥AC,且PQ=AC,
如图2,过点P作对称轴的垂线,垂足为G,设AC交对称轴于点H,
则∠AHG=∠ACO=∠PQG,
在△PQG和△ACO中,
,
∴△PQG≌△ACO(AAS),
∴PG=AO=3,
∴点P到对称轴的距离为3,
又∵y=﹣(x+1)2+4,
∴抛物线对称轴为直线x=﹣1,
设点P(x,y),则|x+1|=3,
解得:x=2或x=﹣4,
当x=2时,y=﹣5,
当x=﹣4时,y=﹣5,
∴点P坐标为(2,﹣5)或(﹣4,﹣5);
②当AC为平行四边形的对角线时,
如图3,设AC的中点为M,
∵A(﹣3,0),C(0,3),
∴M(﹣,),
∵点Q在对称轴上,
∴点Q的横坐标为﹣1,设点P的横坐标为x,
根据中点公式得:x+(﹣1)=2×(﹣)=﹣3,
∴x=﹣2,此时y=3,
∴P(﹣2,3);
综上所述,点P的坐标为(2,﹣5)或(﹣4,﹣5)或(﹣2,3).
33.解:(1)在y=x﹣中,令x=0得y=﹣,令y=0得x=3,
∴A(3,0),B(0,﹣),
∵二次函数y=x2+bx+c图象过A、B两点,
∴,解得,
∴二次函数解析式为y=x2﹣x﹣;
(2)存在,理由如下:
由二次函数y=x2﹣x﹣可得其对称轴为直线x==1,
设P(1,m),Q(n,n2﹣n﹣),而B(0,﹣),
∵C与B关于直线x=1对称,
∴C(2,﹣),
①当BC、PQ为对角线时,如图:
此时BC的中点即是PQ的中点,即,
解得,
∴当P(1,﹣),Q(1,﹣)时,四边形BQCP是平行四边形,
由P(1,﹣),B(0,﹣),C(2,﹣)可得PB2==PC2,
∴PB=PC,
∴四边形BQCP是菱形,
∴此时Q(1,﹣);
②BP、CQ为对角线时,如图:
同理BP、CQ中点重合,可得,
解得,
∴当P(1,0),Q(﹣1,0)时,四边形BCPQ是平行四边形,
由P(1,0),B(0,﹣),C(2,﹣)可得BC2=4=PC2,
∴四边形BCPQ是菱形,
∴此时Q(﹣1,0);
③以BQ、CP为对角线,如图:
BQ、CP中点重合,可得,
解得,
∴P(1,0),Q(3,0)时,四边形BCQP是平行四边形,
由P(1,0),B(0,﹣),C(2,﹣)可得BC2=4=PC2,
∴四边形BCQP是菱形,
∴此时Q(3,0);
综上所述,Q的坐标为:(1,﹣)或(﹣1,0)或(3,0).
34.解:(1)将点A(﹣2,0)、B(6,0)、C(0,﹣3)代入y=ax2+bx+c,
得,
解得,
∴y=x2﹣x﹣3;
(2)如图1,过点A作AE⊥x轴交直线BC于点E,过P作PF⊥x轴交直线BC于点F,
∴PF∥AE,
∴=,
设直线BC的解析式为y=kx+d,
∴,
∴,
∴y=x﹣3,
设P(t,t2﹣t﹣3),则F(t,t﹣3),
∴PF=t﹣3﹣t2+t+3=﹣t2+t,
∵A(﹣2,0),
∴E(﹣2,﹣4),
∴AE=4,
∴===﹣t2+t=﹣(t﹣3)2+,
∴当t=3时,有最大值,
∴P(3,﹣);
(3)∵P(3,﹣),D点在l上,
如图2,当∠CBD=90°时,
过点B作GH⊥x轴,过点D作DG⊥y轴,DG与GH交于点G,过点C作CH⊥y轴,CH与GH交于点H,
∴∠DBG+∠GDB=90°,∠DBG+∠CBH=90°,
∴∠GDB=∠CBH,
∴△DBG∽△BCH,
∴=,即=,
∴BG=6,
∴D(3,6);
如图3,当∠BCD=90°时,
过点D作DK⊥y轴交于点K,
∵∠KCD+∠OCB=90°,∠KCD+∠CDK=90°,
∴∠CDK=∠OCB,
∴△OBC∽△KCD,
∴=,即=,
∴KC=6,
∴D(3,﹣9);
如图4,当∠BDC=90°时,
线段BC的中点T(3,﹣),BC=3,
设D(3,m),
∵DT=BC,
∴|m+|=,
∴m=﹣或m=﹣﹣,
∴D(3,﹣)或D(3,﹣﹣);
综上所述:△BCD是直角三角形时,D点坐标为(3,6)或(3,﹣9)或(3,﹣﹣)或(3,﹣).
35.解:(1)∵A的坐标为(﹣1,0),
∴OA=1,
∵OC=2OA,
∴OC=2,
∴C的坐标为(0,2),
将点C代入抛物线y=﹣x2+ x+(m>0),
得=2,即m=4,
∴抛物线对应的函数表达式为y=﹣x2+x+2;
(2)如图,过P作PH∥y轴,交BC于H,
由(1)知,抛物线对应的函数表达式为y=﹣x2+x+2,m=4,
∴B、C坐标分别为B(4,0)、C(0,2),
设直线BC解析式为y=kx+n,
则,解得,
∴直线BC的解析式为y=﹣x+2,
设点P的坐标为(m,﹣m2+m+2)(0<m<4),则H(m,﹣m+2),
∴PH=﹣m2+m+2﹣(﹣m+2)
=﹣m2+2m
=﹣(m2﹣4m)
=﹣(m﹣2)2+2,
∵S△PBC=S△CPH+S△BPH,
∴S△PBC=PH |xB﹣xC|
=[﹣(m﹣2)2+2]×4
=﹣(m﹣2)2+4,
∴当m=2时,△PBC的面积最大,此时点P(2,3);
(3)存在,理由如下:
∵直线y=x+b与抛物线交于B(m,0),
∴直线BG的解析式为y=x﹣m①,
∵抛物线的表达式为y=﹣x2+ x+②,
联立①②解得,或,
∴G的坐标为(﹣2,﹣m﹣1),
∵抛物线y=﹣x2+ x+的对称轴为直线x=,
∴点F的横坐标为,
①若BG为边,
不妨设E在x轴上方,如图,过点E作EH⊥x轴于H,
设E的坐标为(t,﹣t2+ t+),
∵∠GBE=90°,
∴∠OBG=∠BEH,
∴tan∠OBG=tan∠BEH==,
∴=,
解得:t=3或m(舍),
∴E的坐标为(3,2m﹣6),
由平移性质,
得:B的横坐标向左平移m+2个单位得到G的横坐标,
∵EF∥BG且EF=BG,
∴E横坐标向左平移m+2个单位,
得:到F的横坐标为3﹣(m+2)=﹣m+1,
∴=﹣m+1,
解得m=1,
∴E(3,﹣4),F(0,﹣),
这说明E不在x轴上方,而在x轴下方;
②若BG为对角线,
设BG的中点为M,
由中点坐标公式得,,
∴M的坐标为(,),
∵矩形对角线BG、EF互相平分,
∴M也是EF的中点,
∴E的横坐标为,
∴E的坐标为(,),
∵∠BEG=90°,
∴EM=,
∴=,
整理得:16+(m2+4m+1)2=20(m+2)2,
变形得:16+[(m+2)2﹣3]2=20(m+2)2,
换元,令t=(m+2)2,
得:t2﹣26t+25=0,
解得:t=1或25,
∴(m+2)2=1或25,
∵m>0,
∴m=3,
即E的坐标为(0,),
F的坐标为(1,﹣4),
综上,即E的坐标为(0,),F的坐标为(1,﹣4)或E(3,﹣4),F(0,﹣).
36.解:(1)∵对称轴为直线x=2,
∴b=﹣4,
∴y=x2﹣4x+c,
∵点B(3,0)是抛物线与x轴的交点,
∴9﹣12+c=0,
∴c=3,
∴y=x2﹣4x+3,
令y=0,x2﹣4x+3=0,
∴x=3或x=1,
∴A(1,0),
∵D是抛物线的顶点,
∴D(2,﹣1),
故答案为(1,0),(2,﹣1),y=x2﹣4x+3;
(2)当m+2<2时,即m<0,
此时当x=m+2时,y有最小值,
则(m+2)2﹣4(m+2)+3=,
解得m=,
∴m=﹣;
当m>2时,此时当x=m时,y有最小值,
则m2﹣4m+3=,
解得m=或m=,
∴m=;
当0≤m≤2时,此时当x=2时,y有最小值为﹣1,与题意不符;
综上所述:m的值为或﹣;
(3)存在,理由如下:
A(1,0),C(0,3),
∴AC=,AC的中点为E(,),
设P(2,t),
∵△PAC是以AC为斜边的直角三角形,
∴PE=AC,
∴=,
∴t=2或t=1,
∴P(2,2)或P(2,1),
∴使△PAC是以AC为斜边的直角三角形时,P点坐标为(2,2)或(2,1).
37.解:(1)在y=x2+2x﹣8中,令y=0,得x2+2x﹣8=0,
解得:x1=﹣4,x2=2,
∴A(﹣4,0),B(2,0),
令x=0,得y=﹣8,
∴C(0,﹣8);
(2)设直线AC的解析式为y=kx+b,
∵A(﹣4,0),C(0,﹣8),
∴,
解得:,
∴直线AC的解析式为y=﹣2x﹣8,
∵直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,
∴E(m,m2+2m﹣8),D(m,﹣2m﹣8),
∴DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m,
设DE交x轴于点F,则F(m,0),
∴OF=﹣m,
∴AF=m﹣(﹣4)=m+4,DF=2m+8,
∵OD⊥AC,EF⊥OA,
∴∠ODA=∠OFD=∠DFA=∠AOC=90°,
∴∠DOF+∠COD=∠OCD+∠COD=90°,
∴∠DOF=∠OCD,
∴△ACO∽△DOF,
∴=,
∴OC DF=OA OF,
∴8(2m+8)=4(﹣m),
解得:m=﹣,
∴DE=﹣m2﹣4m=﹣(﹣)2﹣4×(﹣)=;
(3)存在,
如图2,∵y=x2+2x﹣8=(x+1)2﹣9,
抛物线对称轴为直线x=﹣1,
∵以C、M、N、P为顶点的四边形是菱形,
∴分三种情况:CM对角线或CN为对角线或CP为对角线,
①当CP为对角线时,CM∥PN,CM=PN=CN,
∴N点为直线AC与抛物线对称轴的交点,即N(﹣1,﹣6),
CN==,
∴CM=PN=,
∴M1(0,﹣8+),M2(0,﹣8﹣);
②当CN为对角线时,CM∥PN,CM=PN=CP,
设CM=a,则M(0,﹣8+a),P(﹣1,﹣6﹣a),
∴(﹣1﹣0)2+(﹣6﹣a+8)2=a2,
解得:a=,
∴M3(0,﹣),
③当CM对角线时,PN与CM互相垂直平分,设P(﹣1,b),则N(1,b),M(0,2b+8),
∵N(1,b)在直线y=﹣2x﹣8上,
∴b=﹣2×1﹣8=﹣10,
∴M4(0,﹣12),
综上所述,点M的坐标为:M1(0,﹣8+),M2(0,﹣8﹣),M3(0,﹣),M4(0,﹣12).
38.解:(1)把A(﹣1,0),B(4,0)代入y=ax2+bx+4,得到,
解得,
∴y=﹣x2+3x+4;
(2)在y=﹣x2+3x+4中,令x=0,则y=4,
∴C(0,4),
设BC的解析式为y=kx+b,
∵B(4,0),C(0,4),
∴,
∴,
∴直线BC的解析式为y=﹣x+4.
(3)如图1中,
由题意A,B关于抛物线的对称轴直线x=对称,
连接BC交直线x=于点P,连接PA,此时PA+PC的值最小,最小值为线段BC的长==4,
此时P(,).
(4)如图2中,存在.
观察图象可知,满足条件的点N的纵坐标为4或﹣4,
对于抛物线y=﹣x2+3x+4,当y=4时,x2﹣3x=0,解得x=0或3,
∴N1(3,4).
当y=﹣4时,x2﹣3x﹣8=0,解得x=,
∴N2(,﹣4),N3(,﹣4),
综上所述,满足条件的点N的坐标为(3,4)或(,﹣4)或(,﹣4).
39.解:(1)把C(1,0),B(0,3)代入y=﹣x2+bx+c中,
得:,
∴b=﹣2,c=3,
∴y=﹣x2﹣2x+3,
(2)在OE上取一点D,使得OD=OE,
连接DE',BD,
∵,对称轴x=﹣1,
∴E(﹣1,0),OE=1,
∴OE'=OE=1,OA=3,
∴,
又∵∠DOE'=∠E'OA,
△DOE'∽△E'OA,
∴,
∴,
当B,E',D三点共线时,BE′+DE′最小为BD,
BD==,
∴的最小值为;
(3)存在,
∵A(﹣3,0),B(0,3),
设N(n,﹣n2﹣2n+3),
则AB2=18,AN2=(n2+2n﹣3)2+(n+3)2,BN2=n2+(n2+2n)2,
∵以点A,B,M,N为顶点构成的四边形是矩形,
∴△ABN是直角三角形,
若AB是斜边,则AB2=AN2+BN2,
即18=(n2+2n﹣3)2+(n+3)2+n2+(n2+2n)2,
解得:n1=,,
∴N的横坐标为或,
若AN是斜边,则AN2=AB2+BN2,
即(n2+2n﹣3)2+(n+3)2=18+n2+(n2+2n)2,
解得n=0(与点B重合,舍去)或n=﹣1,
∴N的横坐标是﹣1,
若BN是斜边,则BN2=AB2+AN2,
即n2+(n2+2n)2=18+(n2+2n﹣3)2+(n+3)2,
解得n=﹣3(与点B重合,舍去)或n=2,
∴N的横坐标为2,
综上N的横坐标为,,﹣1,2.
40.解:(1)∵二次函数y=﹣x2+bx+c的图象经过点A(3,0),B(﹣1,0),
则 ,
解得:;
(2)由(1)得:抛物线表达式为y=﹣x2+2x+3,C(0,3),A(3,0),
∴△OAC是等腰直角三角形,
∴∠BAC=45°,
由点P的运动可知:AP=t,
过点P作PH⊥x轴,垂足为H,如图,
∴AH=PH==t,即H(3﹣t,0),
又Q(﹣1+t,0),
∴S四边形BCPQ=S△ABC﹣S△APQ
=
=
=(t﹣2)2+4,
∵当其中一点到达终点时,另一点随之停止运动,
AC=,AB=4,
∴0≤t≤3,
∴当t=2时,四边形BCPQ的面积最小,最小值为4;
(3)存在.假设点M是线段AC上方的抛物线上的点,
如图,过点P作x轴的垂线,交x轴于E,过M作y轴的垂线,与EP交于F,连接MQ,MP.
∵△PMQ是等腰直角三角形,PM=PQ,∠MPQ=90°,
∴∠MPF+∠QPE=90°,又∠MPF+∠PMF=90°,
∴∠PMF=∠QPE,
在△PFM和△QEP中,
,
∴△PFM≌△QEP(AAS),
∴MF=PE=t,PF=QE=4﹣2t,
∴EF=4﹣2t+t=4﹣t,
又OE=3﹣t,
∴点M的坐标为(3﹣2t,4﹣t),
∵点M在抛物线y=﹣x2+2x+3上,
∴4﹣t=﹣(3﹣2t)2+2(3﹣2t)+3,
解得:t=或(舍),
∴M点的坐标为(,).
41.解:(1)将B(3,0)代入y=mx2+(m2+3)x﹣(6m+9),化简得,m2+m=0,
则m=0(舍)或m=﹣1,
∴m=﹣1,
∴y=﹣x2+4x﹣3.
∴C(0,﹣3),
设直线BC的函数表达式为y=kx+b,
将B(3,0),C(0,﹣3)代入表达式,可得,
,解得,,
∴直线BC的函数表达式为y=x﹣3.
(2)如图,过点A作AP1∥BC,设直线AP1交y轴于点G,将直线BC向下平移GC个单位,得到直线P2P3.
由(1)得直线BC的表达式为y=x﹣3,A(1,0),
∴直线AG的表达式为y=x﹣1,
联立,解得,或,
∴P1(2,1)或(1,0),
由直线AG的表达式可得G(0,﹣1),
∴GC=2,CH=2,
∴直线P2P3的表达式为:y=x﹣5,
联立,
解得,,或,,
∴P2(,),P3(,);
综上可得,符合题意的点P的坐标为:(2,1),(1,0),(,),(,);
(3)如图,取点Q使∠ACQ=45°,作直线CQ,过点A作AD⊥CQ于点D,过点D作DF⊥x轴于点F,过点C作CE⊥DF于点E,
则△ACD是等腰直角三角形,
∴AD=CD,
∴△CDE≌△DAF(AAS),
∴AF=DE,CE=DF.
设DE=AF=a,则CE=DF=a+1,
由OC=3,则DF=3﹣a,
∴a+1=3﹣a,解得a=1.
∴D(2,﹣2),又C(0,﹣3),
∴直线CD对应的表达式为y=x﹣3,
设Q(n,n﹣3),代人y=﹣x2+4x﹣3,
∴n﹣3=﹣n2+4n﹣3,整理得n2﹣n=0.
又n≠0,则n=.
∴Q(,﹣).
42.解:(1)∵抛物线y=x2+bx+c经过点A(0,﹣5)和点B(5,0),
∴,
解得:,
∴b,c的值分别为﹣4,﹣5.
(2)①设直线AB的解析式为y=kx+n(k≠0),
把A(0,﹣5),B(5,0)的坐标分别代入表达式,得,
解得,
∴直线AB的函数表达式为y=x﹣5.
由(1)得,抛物线L的对称轴是直线x=2,
当x=2时,y=x﹣5=﹣3,
∴点M的坐标是(2,﹣3);
②设抛物线L1的表达式为y=(x﹣2+m)2﹣9,
∵MN∥y轴,
∴点N的坐标是(2,m2﹣9),
∵点P的横坐标为﹣1,
∴P点的坐标是(﹣1,m2﹣6m),
设PE交抛物线L1于另一点Q,
∵抛物线L1的对称轴是直线x=2﹣m,PE∥x轴,
∴根据抛物线的对称性,点Q的坐标是(5﹣2m,m2﹣6m),
(Ⅰ)如图1,当点N在点M及下方,即0<m<时,
∴PQ=5﹣2m﹣(﹣1)=6﹣2m,MN=﹣3﹣(m2﹣9)=6﹣m2,
由平移的性质得,QE=m,
∴PE=6﹣2m+m=6﹣m,
∵PE+MN=10,
∴6﹣m+6﹣m2=10,
解得,m1=﹣2(舍去),m2=1,
(Ⅱ)如图2,当点N在点M及上方,点Q在点P及右侧,
即<m<3时,
PE=6﹣m,MN=m2﹣6,
∵PE+MN=10,
∴6﹣m+m2﹣6=10,
解得,m1=(舍去),m2=(舍去).
(Ⅲ)如图3,当点N在M上方,点Q在点P左侧,
即m>3时,PE=m,MN=m2﹣6,
∵PE+MN=10,
∴m+m2﹣6=10,
解得,m1=(舍去),m2=,
综合以上可得m的值是1或.