中小学教育资源及组卷应用平台
湘教版九年级2021-2022期末模拟练习1
姓名:__________班级:__________考号:__________总分__________
1 、选择题(本大题共12小题,每小题4分,共48分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
(2018年黑龙江省齐齐哈尔市)我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的( )
A.众数 B.平均数 C.中位数 D.方差
(2015年湖北省随州市)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是( )
A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36
C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+9
(2020年四川省成都市)如图,直线,直线和被,,所截,,,,则的长为( )
A.2 B.3 C.4 D.
(2017年山东济南市)关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是( )
A.﹣6 B.﹣3 C.3 D.6
(2019年广西贺州市)已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一直角坐标系中的图象可能( )
A.B.C.D.
(2020年湖北省荆州市)如图,在 正方形网格中,每个小正方形的边长都是1,点A,B,C均在网格交点上,⊙O是的外接圆,则的值是( )
A. B. C. D.
(2020年湖北省荆州市)已知抛物线y=ax2+bx+c(a>0)过(-2,0),(2,3)两点,那么抛物线的对称轴( )
A.只能是x=-1 B.可能是y轴
C.在y轴右侧且在直线x=2的左侧 D.在y轴左侧且在直线x=-2的右侧
(2020年广西北部湾经济区)如图,在中,,高,正方形一边在上,点分别在上,交于点,则的长为( )
A. B. C. D.
(2019年湖北省随州市)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,则下列结论:①abc<0,②a+b+c=0,③ac+b+1=0,④2+c是关于x的一元二次方程ax2+bx+c=0的一个根.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
(2015年黑龙江省牡丹江市)在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为( )
A. 7 B. 8 C. 8或17 D. 7或17
(2019年天津市)二次函数(是常数,)的自变量与函数值的部分对应值如下表:
… 0 1 2 …
… …
且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
(2014年江苏省盐城市)如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是( )
A. B. C. D.
1 、填空题(本大题共6小题,每小题2分,共24分)
(2020年浙江省衢州市)某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,则这组数据的中位数是_____.
(2017年黑龙江龙东地区(农垦、森工用))原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为 .
(2021年四川省成都市)在平面直角坐标系中,若抛物线与x轴只有一个交点,则_______.
(2020年安徽省)如图,一次函数的图象与轴和轴分别交于点和点与反比例函数上的图象在第一象限内交于点轴,轴,垂足分别为点,当矩形与的面积相等时,的值为__________.
(2021年贵州省遵义市)小明用一块含有60°(∠DAE=60°)的直角三角尺测量校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂直高度AB为1.62m,小明与树之间的水平距离BC为4m,则这棵树的高度约为 ___m.(结果精确到0.1m,参考数据:1.73)
(2020年广西柳州市)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰好落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的H处,有下列结论:①∠EBG=45°;②2S△BFG=5S△FGH;③△DEF∽△ABG;④4CE=5ED.其中正确的是_____.(填写所有正确结论的序号)
1 、解答题(本大题共8小题,共78分)
(2017年辽宁省营口市 )先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.
(2021年重庆市(B卷))2021年是中国共产党建党100周年,某校开展了全校教师学习党史活动并进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:
抽取七年级教师的竞赛成绩(单位:分)
6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10.
八年级教师竞赛成绩扇形统计图
(2021年四川省南充市)如图,反比例函数的图象与过点,的直线交于点B和C.
(1)求直线AB和反比例函数的解析式.
(2)已知点,直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求的面积.
(2018年四川省遂宁市)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为i=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).
(2021年广西贵港市)尺规作图(只保留作图痕迹,不要求写出作法),如图,已知ABC,且AB>AC.
(1)在AB边上求作点D,使DB=DC;
(2)在AC边上求作点E,使ADE∽ACB.
(2020年湖北省鄂州市)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:
x(元/件) 4 5 6
y(件) 10000 9500 9000
(1)求y与x的函数关系式(不求自变量的取值范围);
(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?
(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.
(2018年湖南省郴州市)在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.
(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.
求证:△DEF是等腰三角形;
(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).
①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.
②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.
(2015年辽宁省锦州市)如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过点A(﹣1,0)和点B(4,0),且与y轴交于点C,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点,连接CA,CD,PD,PB.
(1)求该抛物线的解析式;
(2)当△PDB的面积等于△CAD的面积时,求点P的坐标;
(3)当m>0,n>0时,过点P作直线PE⊥y轴于点E交直线BC于点F,过点F作FG⊥x轴于点G,连接EG,请直接写出随着点P的运动,线段EG的最小值.
答案解析
1 、选择题
【考点】众数
【分析】众数是一组数据中出现次数最多的数,可能不止一个,对这个米店老板来说,他最关注的是数据的众数.
解:对这个米店老板来说,他最应该关注的是这些数据(袋数)中的哪一包装卖得最多,即是这组数据的众数.
故选:A.
【点评】考查了众数、平均数、中位数和方差意义,比较简单,属于基础题.
【考点】解一元二次方程-配方法..
【分析】根据配方法,可得方程的解.
解:x2﹣6x﹣4=0,
移项,得x2﹣6x=4,
配方,得(x﹣3)2=4+9.
故选:D.
【点评】本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.
【考点】平行线分线段成比例定理
【分析】根据平行线分线段成比例定理得出比例式,代入已知线段得长度求解即可.
解:∵直线l1∥l2∥l3,
∴.
∵AB=5,BC=6,EF=4,
∴.
∴DE=.
故选:D.
【点评】本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.
【考点】根与系数的关系.
【分析】设方程的另一个根为n,根据两根之和等于﹣,即可得出关于n的一元一次方程,解之即可得出结论.
解:设方程的另一个根为n,
则有﹣2+n=﹣5,
解得:n=﹣3.
故选B.
【点评】本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1 x2=.
【考点】一次函数的图象,反比例函数的图象
【分析】根据反比例函数图象确定b的符号,结合已知条件求得a的符号,由a、b的符号确定一次函数图象所经过的象限.
解:若反比例函数y=经过第一、三象限,则a>0.所以b<0.则一次函数y=ax﹣b的图象应该经过第一、二、三象限,
若反比例函数y=经过第二、四象限,则a<0.所以b>0.则一次函数y=ax﹣b的图象应该经过第二、三、四象限.
故选项A正确,
故选:A.
【点评】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.
【考点】三角形的外接圆与外心,勾股定理的应用,圆周角定理,余弦的定义
【分析】作直径BD,连接CD,根据勾股定理求出BD,根据圆周角定理得到∠BAC=∠BDC,根据余弦的定义解答即可.
解:如图,作直径BD,连接CD,
由勾股定理得,
在Rt△BDC中,cos∠BDC=
由圆周角定理得,∠BAC=∠BDC,
∴cos∠BAC=cos∠BDC=
故选:B.
【点评】本题考查的是三角形的外接圆与外心,掌握勾股定理的应用,圆周角定理、余弦的定义是解题的关键.
【考点】二次函数的性质
【分析】根据题意,将(-2,0),(2,3)代入可得两个方程,解出可作判定抛物线对称轴的位置
解:∵抛物线抛物线y=ax2+bx+c(a>0)过(-2,0),(2,3)两点,
∴ ,
解得 ,
∴对称轴,
又对称轴在(-2,2)之间,
∴故选D.
【点评】本题考查了二次函数的性质,根据点坐标代入列方程是解题的关键。
【考点】相似三角形的应用
【分析】证明△AEF∽△ABC,根据相似三角形对应边上的高线的比等于相似比即可求得.
解:∵四边形EFGH是正方形,
∴EF∥BC,
∴△AEF∽△ABC,
∴.
设AN=x,则EF=FG=DN=60-x,
∴
解得:x=20
所以,AN=20.
故选:B.
【点评】本题考查了正方形以及相似三角形的应用,注意数形结合的运用是解题关键.
【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征,抛物线与x轴的交点
【分析】①由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断,
②根据对称轴是直线x=1,可得b=﹣2a,代入a+b+c,可对②进行判断,
③利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c即可对③作出判断,
④根据抛物线的对称性得到B点的坐标,即可对④作出判断.
解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①正确,
∵b=﹣2a,
∴a+b=a﹣a=0,
∵c>0,
∴a+b+c>0,所以②错误,
∵C(0,c),OA=OC,
∴A(﹣c,0),
把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,
∴ac﹣b+1=0,所以③错误,
∵A(﹣c,0),对称轴为直线x=1,
∴B(2+c,0),
∴2+c是关于x的一元二次方程ax2+bx+c=0的一个根,所以④正确,
故选:B.
【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:一次项系数b和二次项系数a共同决定对称轴的位置:常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c),抛物线与x轴交点个数由△决定,熟练掌握二次函数的性质是关键.
【考点】解直角三角形
【分析】首先根据特殊角的三角函数值求得∠B的度数,然后分锐角三角形和钝角三角形分别求得BD和CD的长后即可求得线段BC的长.
解:∵cos∠B=,
∴∠B=45°,
当△ABC为钝角三角形时,如图1,
∵AB=12,∠B=45°,
∴AD=BD=12,
∵AC=13,
∴由勾股定理得CD=5,
∴BC=BD﹣CD=12﹣5=7;
当△ABC为锐角三角形时,如图2,
BC=BD+CD=12+5=17,
故选D.
【点评】本题考查了解直角三角形的知识,能从中整理出直角三角形是解答本题的关键,难点为分类讨论,难点中等.
【考点】二次函数的综合题
【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.
解:∵由表格可知当x=0和x=1时的函数值相等都为-2
∴抛物线的对称轴是:x=-=;
∴a、b异号,且b=-a;
∵当x=0时y=c=-2
∴c
∴abc0,故①正确;
∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t
∴和3是关于的方程的两个根;故②正确;
∵b=-a,c=-2
∴二次函数解析式:
∵当时,与其对应的函数值.
∴,∴a;
∵当x=-1和x=2时的函数值分别为m和n,
∴m=n=2a-2,
∴m+n=4a-4;故③错误
故选:C.
【点评】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量与函数值的值结合二次函数的性质逐条分析给定的结论是关键.
【考点】反比例函数综合题..
【分析】根据反比例函数图象上点的坐标特征由A点坐标为(﹣1,1)得到k=﹣1,即反比例函数解析式为y=﹣,且OB=AB=1,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则B点的坐标可表示为(﹣,t),于是利用PB=PB′得t﹣1=|﹣|=,然后解方程可得到满足条件的t的值.
解:如图,
∵A点坐标为(﹣1,1),
∴k=﹣1×1=﹣1,
∴反比例函数解析式为y=﹣,
∵OB=AB=1,
∴△OAB为等腰直角三角形,
∴∠AOB=45°,
∵PQ⊥OA,
∴∠OPQ=45°,
∵点B和点B′关于直线l对称,
∴PB=PB′,BB′⊥PQ,
∴∠BPQ=∠B′PQ=45°,即∠B′PB=90°,
∴B′P⊥y轴,
∴B点的坐标为(﹣,t),
∵PB=PB′,
∴t﹣1=|﹣|=,
整理得t2﹣t﹣1=0,解得t1=,t2=(舍去),
∴t的值为.
故选A.
【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质;会用求根公式法解一元二次方程.
1 、填空题
【考点】平均数,中位数
【分析】先根据平均数的定义计算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.
解:∵某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,
∴x=5×5﹣4﹣4﹣5﹣6=6,
∴这一组数从小到大排列为:4,4,5,6,6,
∴这组数据的中位数是5.
故答案为:5.
【点评】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.
【考点】一元二次方程的应用.
【分析】先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1﹣x),第二次降价后的售价是原来的(1﹣x)2,再根据题意列出方程解答即可.
解:设这两次的百分率是x,根据题意列方程得
100×(1﹣x)2=81,
解得x1=0.1=10%,x2=1.9(不符合题意,舍去).
答:这两次的百分率是10%.
故答案为:10%.
【点评】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
【考点】抛物线与x轴的交点
【分析】根据抛物线与x轴只有一个交点可知方程=0根的判别式△=0,解方程求出k值即可得答案.
解:∵抛物线与x轴只有一个交点,
∴方程=0根的判别式△=0,即22-4k=0,
解得:k=1,
故答案为:1
【点评】本题考查二次函数与x轴的交点问题,对于二次函数(k≠0),当判别式△>0时,抛物线与x轴有两个交点;当k=0时,抛物线与x轴有一个交点;当x<0时,抛物线与x轴没有交点;熟练掌握相关知识是解题关键.
【考点】反比例函数与一次函数的交点问题
【分析】根据题意由反比例函数的几何意义得:再求解的坐标及建立方程求解即可.
解: 矩形,在上,
把代入:
把代入:
由题意得:
解得:(舍去)
故答案为:
【点评】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键.
【考点】解直角三角形的应用
【分析】先根据题意得出AD的长,在Rt△AED中利用锐角三角函数的定义求出CD的长,由CE=CD+DE即可得出结论.
解:∵AB⊥BC,DC⊥BC,AD∥BC,
∴四边形ABCD是矩形,
∵BC=4m,AB=1.62m,
∴AD=BC=4m,DC=AB=1.62m,
在Rt△AED中,
∵∠DAE=60°,AD=4m,
∴DE=AD tan60°=4×=4(m),
∴CE=ED+DC=4+1.62≈8.5(m)
答:这棵树的高度约为8.5m.
故答案为:8.5.
【点评】本题考查的是解直角三角形在实际生活中的应用,熟知锐角三角函数的定义是解答此题的关键.
【考点】矩形的性质,折叠的性质,勾股定理,相似三角形的判定与性质
【分析】①根据折叠、矩形的性质进行推理即可;②根据等高三角形的面积比等于底边的比计算分析即可;③由矩形的性质、勾股定理及相似三角形的判定定理计算分析即可;④由矩形的性质可得CD的长,根据CE=CD﹣ED求得CE的值,则可求得答案.
解:①由折叠的性质可知:∠CBE=∠FBE,∠ABG=∠FBG,
∵四边形ABCD是矩形,
∴∠ABC=90°,
∴∠EBG=∠GBH+∠EBF=∠CBF+∠ABF=∠ABC=45°.
故①正确;
②由折叠的性质可知:BF=BC=10,BH=AB=6,
∴HF=BF﹣BH=4,
∴===,
∴2S△BFG=5S△FGH;
故②正确;
③∵四边形ABCD是矩形,
∴∠A=∠D=90°,
在Rt△ABF中,AF==8,
设GF=x,即HG=AG=8﹣x,
在Rt△HGF中,HG2+HF2=GF2,
即(8﹣x)2+42=x2,解得x=5,
∴AG=3,
∴FD=2;
同理可得ED=,
∴==2,
==,
∴≠,
∴△ABG与△DEF不相似,
故③错误;
④∵CD=AB=6,ED=,
∴CE=CD﹣ED=,
∴=,
∴4CE=5ED.
故④正确.
综上所述,正确的结论的序号为①②④,
故答案为:①②④.
【点评】本题考查了矩形的性质、折叠的性质、勾股定理及相似三角形的判定与性质等知识点,熟练掌握相关性质及定理是解题的关键.
1 、解答题
【考点】 分式的化简求值; 零指数幂;负整数指数幂;特殊角的三角函数值..
【分析】先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.
解:原式=[﹣]÷
=
=﹣,
当x=()﹣1﹣(2017﹣)0=3﹣1=2,y=sin60°=×=时,
原式=﹣=﹣4.
【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.
【考点】中位数,众数
【分析】(1)根据中位数和众数的定义分别求解即可;
(2)先求出被调查的20人中成绩到达8分以上的人数,求出占比,再用120乘该比例即可;
(3)根据平均数,中位数,众数等对应的实际意义进行判断即可.
解:(1)题干中七年级的成绩已经从小到达排列,
∴七年级的中位数为;
扇形统计图中,D的占比更多,D代表得分为9分的人数,
∴八年级的众数为;
故答案为:8;9;
(2)由题可知,七年被抽查的20名教师成绩中,8分及以上的人数为17人,
∴(人),
∴该校七年级120名教师中竞赛成绩达到8分及以上的人数为102人;
(3)八年级教师更优异,因为八年级教师成绩的中位数高于七年级教师成绩的中位数.(不唯一,符合题意即可)
【点评】本题考查数据分析,理解中位数,众数等的定义与求法,熟练运用中位数和众数做决策是解题关键.
【考点】一次函数与反比例函数综合问题
【分析】(1)分别设出对应解析式,利用待定系数法求解即可;
(2)先求出C点坐标,从而求出直线CD的解析式,然后求出E点坐标,再利用割补法求解面积即可.
解:(1)设直线AB的解析式为,
将点,代入解析式得:
,解得:,
∴直线AB的解析式为:;
设反比例函数解析式为:,
将代入解析式得:,
∴反比例函数的解析式为:;
(2)联立,解得:或,
∴C点坐标为:,
设直线CD的解析式为:,
将,代入得:
,解得:,
∴直线CD的解析式为:,
联立,解得:或,
∴E点的坐标为:;
如图,过E点作EF∥y轴,交直线AB于F点,
则F点坐标为,,
∴.
【点评】本题考查一次函数与反比例函数综合问题,准确求出各直线的解析式以及与双曲线的交点坐标,灵活运用割补法求解面积是解题关键.
【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题
【分析】作DF⊥AC于F.解直角三角形分别求出BE、EC即可解决问题;
解:作DF⊥AC于F.
∵DF:AF=1:,AD=200米,
∴tan∠DAF=,
∴∠DAF=30°,
∴DF=AD=×200=100(米),
∵∠DEC=∠BCA=∠DFC=90°,
∴四边形DECF是矩形,
∴EC=DF=100(米),
∵∠BAC=45°,BC⊥AC,
∴∠ABC=45°,
∵∠BDE=60°,DE⊥BC,
∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,
∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,
∴∠ABD=∠BAD,
∴AD=BD=200(米),
在Rt△BDE中,sin∠BDE=,
∴BE=BD sin∠BDE=200×=100(米),
∴BC=BE+EC=100+100(米).
【点评】本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
【考点】线段垂直平分线的性质,作图—复杂作图,相似三角形的判定
【分析】(1)作线段的垂直平分线交于点,连接即可.
(2)作,射线交于点,点即为所求.
解:(1)如图,点即为所求.
(2)如图,点即为所求.
【点评】本题考查作图相似变换,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
【考点】一次函数的应用,二次函数的应用
【分析】(1)设y与x的函数关系式为y=kx+b,代入表中的数据求解即可;
(2)设这一周该商场销售这种商品获得的利润为w,根据总利润=单件利润×销售量列出函数关系式求最大值,注意x的取值范围;
(3)写出w关于x的函数关系式,根据当x≤15时,利润仍随售价的增大而增大,可得,求解即可.
解:(1)设y与x的函数关系式为y=kx+b,
代入(4,10000),(5,9500)可得:,
解得:,
即y与x的函数关系式为;
(2)设这一周该商场销售这种商品获得的利润为w,
根据题意可得:,
解得:,
∵,
∴当x=12时,w有最大值,w=54000,
答:这一周该商场销售这种商品获得的最大利润为54000元,售价为12元.
(3)设这一周该商场销售这种商品获得的利润为w,
当每销售一件商品便向某慈善机构捐赠m元时,
由题意,当x≤15时,利润仍随售价的增大而增大,
可得:,解得:m≥3,
∵
∴
故m的取值范围为:.
【点评】本题考查二次函数的实际应用——最大利润问题,解题的关键是根据题意列出函数关系式,通过配方法找到最大值.
【考点】相似形综合题
【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;
(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;
②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.
解:(1)由翻折可知:∠DFP=∠DFQ,
∵PF∥BC,
∴∠DFP=∠ADF,
∴∠DFQ=∠ADF,
∴△DEF是等腰三角形,
(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,
∵∠P′DF′=∠PDF,
∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,
∴∠P′DC=∠F′DB,
由旋转的性质可知:
△DP′F′≌△DPF,
∵PF∥BC,
∴△DPF∽△DCB,
∴△DP′F′∽△DCB
∴,
∴△DP'C∽△DF'B
②当∠F′DB=90°时,如图所示,
∵DF′=DF=BD,
∴=,
∴tan∠DBF′==,
当∠DBF′=90°,
此时DF′是斜边,
即DF′>DB,不符合题意,
当∠DF′B=90°时,如图所示,
∵DF′=DF=BD,
∴∠DBF′=30°,
∴tan∠DBF′=
【点评】本题考查相似三角形的性质与判定,涉及旋转的性质,锐角三角函数的定义,相似
三角形的性质以及判定等知识,综合程度较高,需要学生灵活运用知识.
【考点】 二次函数综合题.
【分析】(1)根据抛物线y=ax2+bx+2经过点A(﹣1,0)和点B(4,0),应用待定系数法,求出该抛物线的解析式即可.
(2)首先根据三角形的面积的求法,求出△CAD的面积,即可求出△PDB的面积,然后求出BD=2,即可求出|n|=3,据此判断出n=3或﹣3,再把它代入抛物线的解析式,求出x的值是多少,即可判断出点P的坐标.
(3)首先应用待定系数法,求出BC所在的直线的解析式是多少;然后根据点P的坐标是(m,n),求出点F的坐标,再根据二次函数最值的求法,求出EG2的最小值是多少,即可求出线段EG的最小值.
【解答】 解:(1)把A(﹣1,0),B(4,0)两点的坐标代入y=ax2+bx+2中,可得
解得
∴抛物线的解析式为:y=﹣0.5x2+1.5x+2.
(2)∵抛物线的解析式为y=﹣0.5x2+1.5x+2,
∴点C的坐标是(0.2),
∵点A(﹣1,0)、点D(2,0),
∴AD=2﹣(﹣1)=3,
∴△CAD的面积=,
∴△PDB的面积=3,
∵点B(4,0)、点D(2,0),
∴BD=2,
∴|n|=3×2÷2=3,
∴n=3或﹣3,
①当n=3时,
0.5m2+1.5m+2=3,
解得m=或m=﹣,
∴点P的坐标是(,3)或(﹣,3).
②当n=﹣3时,
0.5m2+1.5m+2=﹣3,
整理,可得
m2+3m+10=0,
∵△=32﹣4×1×10=﹣31<0,
∴方程无解.
综上,可得
点P的坐标是(,3)或(﹣,3).
(3)如图1,
,
设BC所在的直线的解析式是:y=mx+n,
∵点C的坐标是(0,2),点B的坐标是(4,0),
∴
解得
∴BC所在的直线的解析式是:y=﹣0.5x+2,
∵点P的坐标是(m,n),
∴点F的坐标是(m,﹣0.5m+2),
∴EG2=m2+(﹣0.5m+2)2=1.25m2﹣2m+4=1.25+3.2,
∵m>0,
∴m=时,线段EG的最小值是:=,
即线段EG的最小值是.
点评: (1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.
(2)此题还考查了待定系数法求直线、函数解析式的方法,要熟练掌握.
(3)此题还考查了三角形的面积的求法,要熟练掌握.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)