(共36张PPT)
第二节 对电阻的进一步研究
1.导体的伏安特性曲线:在直角坐标系中,用纵轴表示通
过导体的________,横轴表示导体的__________,画出的 I-U
图线叫做导体的______________.在 I-U 图线中,图线斜率的
倒数表示导体的________.
电流
电压
伏安特性曲线
电阻
3.电阻的并联:把几个导体的一端连在一起,另一端也
连在一起,然后在把这两端接入电路,这样的连接方式叫
.并联电路的总电压与各支路电压 ,总电
流等于各支路电流 .并联电路总电阻的倒数等于
________________,公式为 =______________.
2.电阻的串联:把几个导体依次首尾相连,接入电路,这
样的连接方式叫________.串联电路中各处的电流________,
总电压等于各部分电路的电压________.串联电路的总电阻等
于______________,公式为 R=______________.
1
R
串联
相等
之和
各电阻之和
R1+R2+…+Rn
并联
相等
之和
各电阻倒数之和
4.将电阻 R1=1 Ω、R2=3 Ω并联接入电路,那么通过电阻
C
R1、R2 的电流强度之比 I1∶I2 为( )
A.1∶3
B.1∶1
C.3∶1
D.无法确定
5.有四个金属导体,它们的伏安特性曲线如图 2-2-1 所
示,电阻最大的导体是( )
D
图 2-2-1
A.a
C.c
B.b
D.d
知识点 1 导体的伏安特性曲线
如图 2-2-2 所示为两电阻 RA、RB 的
伏安特性曲线,根据图线回答:
(1)RA、RB 的大小之比为________.
(2)当这两个电阻分别加上相同电压
时,通过的电流之比为 IA∶IB=________.
(3)当这两个电阻分别通过相同的电流时,
电阻两端的电压之比 UA∶UB=________.
图 2-2-2
1∶3
3∶1
1∶3
流跟电压成正比,导体电阻R= = ,即电
1.导体的伏安特性曲线:较直观地反映了导体中的电流和
电压的关系,I-U 图线上各点的斜率为导体电阻的倒数.斜率
越大,电阻越小;斜率越小,电阻越大.
2.图线的形状:按照 I-U 图线的形状是否为直线,可将
电学元件分为线性元件和非线性元件.
(1)线性元件的 I-U 图线是直线,表示电
U 1
I k
阻等于图线斜率的倒数.如图 2-2-3 所示. 图 2-2-3
点连线的斜率的倒数,而不等于该点切线斜率的倒数.如图
2-2-4 所示.
图 2-2-4
关系,导体电阻 Rn=
(2)非线性元件的 I-U 图线是曲线,电流跟电压不是正比
Un
In
,即电阻等于图线上点(Un,In)与坐标原
【例 1】(双选)某导体中的电流随其两端电压的变化如图
2-2-5 所示,则下列说法中正确的是( )
B.加 5 V 电压时,导体的电阻约是 5 Ω
C.由图可知,随着电压的增大,导体
的电阻不断减小
D.由图可知,随着电压的减小,导体
的电阻不断减小
图 2-2-5
解析:不论是线性元件还是非线性元件,R= 一样适用,
A错误.当U=5V时,I=1.0A,R= =5Ω,B选项正确.
U
I
U
I
由图线可知,随着电压的增大,各点到坐标原点连线的斜率越
来越小,电阻越来越大,反之,随着电压的减小,电阻减小,
C 错误,D 正确.
答案:BD
【触类旁通】
1.(双选)如图 2-2-6 所示是电阻 R1 和
R2 的伏安特性曲线,则下列结论正确的是( )
AC
A.R1>R2
B.R1C.R1、R2 串联后作为一个新电阻的伏安特性曲线在Ⅰ区
D.R1、R2 串联后作为一个新电阻的伏安特性曲线在Ⅱ区
解析:斜率 k 表示电阻的倒数,斜率越大,电阻越小;R1>R2,
A 正确;R1、R2 串联后电阻值变大,因此在Ⅰ区,C 正确.
图 2-2-6
(1)若将两个电阻串联接入电压 6 V 的电路上,则总电阻为
______Ω,流过电路的总电流为______A;流过 R1、R2 的电流
分别为_____A、_____A;R1、R2 两端的电压分别为______V、
知识点 2 电阻的串、并联
两个定值电阻阻值分别为 R1=4 Ω、R2=2 Ω,将它们按以
下情形接入电路,回答问题:
________V.
(2)若将两个电阻并联接入电压 6 V 的电路上,则总电阻为
________Ω,流过电路的总电流为________A;流过 R1、R2 的
电流分别为________A、________A;R1、R2 两端的电压分别为
________V、________V.
6
1
1
1
4
2
4.5
1.5
3
6
6
1.特点与规律
(1)电流.
①串联电路中各处的电流相等:I 总=I1=I2.
②并联电路的总电流等于各支路电流之和:I 总=I1+I2.
图 2-2-7
图 2-2-8
= + .
(2)电压.
①串联电路的总电压等于各部分电路电压之和:U 总=U1
+U2.
②并联电路的总电压与各支路电压相等:U 总=U1=U2.
(3)总电阻 R 总.
①串联电路的总电阻等于各部分电路电阻之和:R 总=R1+
R2.
1
R 总
②并联电路总电阻的倒数等于各支路电阻的倒数之和:
1 1
R1 R2
①串联电路中功率和电阻成正比:
(4)功率分配关系.
②并联电路中功率和电阻成反比:P1R1=P2R2=…=U 2.
(5)几个相同阻值的电阻R并联,其总电阻为R总= .若并
2.几个重要结论
(1)串联电路的总电阻大于其中任一部分电路的电阻.
(2)电阻串联时,其中一个电阻增大,总电阻一定增大.
(3)并联电路的总电阻小于其中任一支路的电阻,且小于其
中最小的电阻.
(4)多个电阻并联时,其中任一电阻增大或减小,总电阻也
随之增大或减小.
R
n
联的支路增多时,总电阻将减小.
【例 2】电阻 R1 的阻值为 6 Ω,与电阻 R2 并联后接入电路
中,通过它们的电流之比 I1∶I2=2∶3,则:
(1)R2 的阻值多大?并联电路的总阻值是多少?电阻 R1、R2
消耗的电功率之比是多少?
(2)若将 R1、R2 串联接入电路中,则电路总阻值是多少?电
阻 R1、R2 消耗的电功率之比是多少?
R 总=
解:(1)由并联电路电压相同的特点得
I1R1=I2R2=U
所以电阻 R2=4 Ω
R1R2
R1+R2
=2.4 Ω
又由 P1R1=P2R2=…=PnRn=U2 得
P1∶P2=2∶3.
(2)若将 R1、R2 串联,R 总=R1+R2=10 Ω
R1、R2 消耗的电功率之比 P1∶P2=R1∶R2=3∶2.
【触类旁通】
2.(2011 年执信中学高二期末)把一条电阻为 64 Ω的均匀电
阻丝截成等长的 n 段后,再并联起来,电阻变为 1 Ω,则 n 等
于( )
D
A.32
B.24
C.12
D.8
解析:64 Ω的均匀电阻丝截成等长的 n 段后,每段电阻为
1.串、并联电路的分析与计算
对于同时含有串联和并联连接的混联电路的计算,首先要
弄清电路的连接情况,即各电阻之间的串、并联关系;然后根
据欧姆定律和串、并联电路的电压、电流关系,正确选择相关
公式,逐级计算.
【例 3】由 4 个电阻连接成如图 2-2-9 所示的混联电路,
其中 R1=8 Ω,R2=4 Ω,R3=6 Ω,R4=3 Ω.求:
图 2-2-9
(1)a、d 之间的总电阻;
(2)如果把 42 V 的电压加在 a、d 两端,通过每个电阻的电
流是多少?
【触类旁通】
3.(双选)一个 T 型电路如图 2-2-10
所示,电路中的电阻 R1=10 Ω,R2=120 Ω,
R3=40 Ω.另有一测试电源,电压恒为 100 V,
则( )
A.当 c、d 端短路时,a、b 之间的等效电阻是 40 Ω
B.当 a、b 端短路时,c、d 之间的等效电阻是 40 Ω
C.当 a、b 两端接通测试电源时,c、d 两端的电压为 80 V
D.当 c、d 两端接通测试电源时,a、b 两端的电压为 80 V
图 2-2-10
解析:根据电路中串、并联特点,c、d 端短路时,a、b 间
等效电阻是 40 Ω,A 正确;a、b 端短路时,c、d 间等效电阻是
128 Ω,B 错误;a、b 接电源时,c、d 端电压为 80 V,C 正确;
c、d 端接电压时,a、b 端电压为 25 V,D 错误.
答案:AC
限流接法 分压接法
R 为负载电阻,
R0 为滑动变阻器
闭合开关前滑片
位置 滑动触头 P 在最右端
B 处,即保证变阻器
接入电路中的电阻最
大 滑动触头 P 在最左端 A
处,即保证开始时 R
上得到的电压为零
R 两端的电压调
节范围 R
U~U
R0+R 0~U
2.滑动变阻器的两种接法及其作用
(1)限流式接法电路简单,耗能低,但电压调节范围较小;
而分压式接法电压调节范围较大.且可从零开始变化.
(2)通常滑动变阻器以限流接法为主,但在下列三种情况,
必须选择分压式接法.
①若采用限流式将滑动变阻器阻值调到最大时,待测电阻
上的电流(或电压)仍超过电流表(或电压表)的量程,或超过待测
电阻的额定电流,则必须选用分压式接法.
②若待测电阻的阻值比滑动变阻器总电阻大得多,以致在
限流电路中,滑动变阻器的滑片从一端滑到另一端时,待测电
阻上的电流或电压变化范围不够大,此时应改用分压式电路.
③若实验中要求电压从零开始连续可调,则必须采用分压
式电路.
【例 4】如图 2-2-11,滑动变阻器 R1 的最大值是 200 Ω,
R2=R3=300 Ω,A、B 两端电压 UAB=8 V.
图 2-2-11
(1)当开关 S 断开时,移动滑片 P,R2 两端可获得的电压变
化范围是多少?
(2)当开关 S 闭合时,移动滑片 P,R2 两端可获得的电压变
化范围又是多少?
解:(1)当 S 断开时,滑动变阻器 R1 为限流式接法,R3 及
R1 的下部不接在电路中,当滑片 P 在最上端时,R2 上获得的电
压最大,此时 R1 接入电路的电阻为零,因此 R2 最大电压等于
UAB=8 V.当滑片 P 在最下端时,R1 全部与 R2 串联,此时 R2
上的电压最小,UR2=
R2
R1+R2
UAB=4.8 V,所以 R2 上的电压变化
范围为 4.8~8 V.
【触类旁通】
4.在如图 2-2-12 所示的电路中,滑动变阻器的最大电
阻为 R0,负载电阻为 RL,电路 A、B 两端电压为 U0 不变.
(1)当开关 S 断开时,移动滑片 P,RL 两端可获得的电压变
化范围是多少?
(2)当开关 S 闭合时,移动滑片 P,RL 两端可获得的电压变
化范围又是多少?
图 2-2-12
1.公式I= 、R= 和U=IR中的I、U、R具有同时性的
U U
R I
特点,表明流过同一导体的电流与导体两端电压、导体电阻的
一种瞬时对应关系.可以用来求导体中的电流、导体两端的电
压与测定导体的电阻.
2.R= 是电阻的定义式,具有普适性,反映了导体对电
阻R与U、I无关,仅与导体本身有关.I= 是欧姆定律的数
U
I
流的阻碍作用,是测量和计算电阻的一种方法,对于给定的电
U
R
学表达式,反映了电流决定于导体两端的电压和导体的电阻的
大小.而 U=IR 反映了导体两端的电压降等于 I 和 R 的乘积,
即在导体中沿电流方向电势逐渐降低,给出了计算导体两端电
压的方法.
解析:导体的电阻是导体本身的性质,与导体的长度、横
截面积、材料及温度有关,与 U、I 无关,在温度不变时是一个
定值,所以 B 错 A 对;导体中的电流由加在它两端的电压和本
身的电阻决定,且与 U 成正比,与 R 成反比,所以 C 对;导体
两端的电压是由电源和该导体在电路中的连接情况决定的,不
是由 I、R 产生的,所以 D 错.
答案:AC
解析:导体的电阻是由导体自身的性质决定的,与所加的
电压和通过的电流无关.当 R 一定时,才有 I∝U,故 A 错误,
B、C、D 正确.
答案:A