2021-2022学年人教版八年级数学上册14.1整式的乘法 解答题专题训练(Word版含答案)

文档属性

名称 2021-2022学年人教版八年级数学上册14.1整式的乘法 解答题专题训练(Word版含答案)
格式 doc
文件大小 108.2KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-11-29 14:14:40

图片预览

文档简介

2021-2022学年人教版八年级数学上册《14.1整式的乘法》解答题专题训练(附答案)
1.(1)2(x2)3 x3﹣(3x3)3+(5x)2 x7;
(2)(a﹣1)(3a2﹣2a+4).
2.若(am+1bn+2)(a2n﹣1b2n)=a5b3,则求m+n的值.
3.(1)已知ax=5,ax+y=25,求ax+ay的值;
(2)已知10α=5,10β=6,求102α+2β的值.
4.计算:(﹣a)2 (﹣a3) (﹣a)+(﹣a2)3﹣(﹣a3)2.
5.用简便方法计算下列各题
(1)()2021×(﹣1.25)2022.
(2)(3)12×()11×(﹣2)3.
6.先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.
7.计算0.1259×(﹣8)10+()11×(2)12.
8.计算:
(1)(﹣2x)3(2x3﹣x﹣1)﹣2x(2x3+4x2);
(2)(x+3)(x﹣7)﹣x(x﹣1).
9.计算:an﹣5(an+1b3m﹣2)2+(an﹣1bm﹣2)3(﹣b3m+2)
10.计算:(x4)2+(x2)4﹣x(x2)2 x3﹣(﹣x)3 (﹣x2)2 (﹣x)
11.计算:
(1)
(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)
12.计算:
13.已知将(x3+mx+n)(x2﹣3x+4)展开的结果不含x3和x2项.(m,n为常数)
(1)求m、n的值;
(2)在(1)的条件下,求(m+n)(m2﹣mn+n2)的值.
14.计算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
15.已知(x2+mx+n)(x﹣1)的结果中不含x2项和x项,求m、n的值.
16.计算:6a2(ab﹣b2)﹣2a2b(a﹣b).
17.计算:
(1)(﹣4ab3)(﹣ab)﹣(ab2)2;
(2)(1.25×108)×(﹣8×105)×(﹣3×103).
18.已知(x3+mx+n)(x2﹣3x+4)展开式中不含x3和x2项.
(1)求m、n的值;
(2)当m、n取第(1)小题的值时,求(m+n)(m2﹣mn+n2)的值.
19.(﹣2xy)2 (3xy2)﹣3x(4x2y4﹣xy2)
20.计算:
(1)x2(x﹣1)﹣x(x2﹣x﹣1);
(2)(2a)2 b4+12a3b2.
21.已知x2﹣x+1=0,求代数式(x+1)2﹣(x+1)(2x﹣1)的值.
22.[xy(x2﹣xy)﹣x2y(x﹣y)] 3xy2.
23.化简:(x+5)(2x﹣3)﹣2x(x2﹣2x+3)
参考答案
1.解:(1)2(x2)3 x3﹣(3x3)3+(5x)2 x7;
=2x6 x3﹣27x9+25x2 x7
=2x9﹣27x9+25x9
=0.
(2)(a﹣1)(3a2﹣2a+4)
=3a3﹣2a2+4a﹣3a2+2a﹣4
=3a3﹣5a2+6a﹣4.
2.解:(am+1bn+2)(a2n﹣1b2n)=am+1×a2n﹣1×bn+2×b2n
=am+1+2n﹣1×bn+2+2n
=am+2nb3n+2=a5b3.
∴m+2n=5,3n+2=3,解得:n=,m=,
m+n=.
3.解:(1)∵ax+y=ax ay=25,ax=5,
∴ay=5,
∴ax+ay=5+5=10;
(2)102α+2β=(10α)2 (10β)2=52×62=900.
4.解:原式=a2 (﹣a3) (﹣a)+(﹣a6)﹣a6
=a6﹣a6﹣a6
=﹣a6.
5.解:(1)原式=[]2021×(﹣)
=﹣1×(﹣)
=;
(2)原式=×()11×()11×(﹣8)
=﹣25×
=﹣25.
6.解:3a(2a2﹣4a+3)﹣2a2(3a+4)
=6a3﹣12a2+9a﹣6a3﹣8a2
=﹣20a2+9a,
当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.
7.解:0.1259×(﹣8)10+()11×(2)12
=(﹣0.125×8)9×(﹣8)+(×2)11×2
=8+2
=10.
8.解:(1)原式==﹣16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;
(2)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.
9.解:原式=an﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),
=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),
=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,
=0.
10.解:(x4)2+(x2)4﹣x(x2)2 x3﹣(﹣x)3 (﹣x2)2 (﹣x)=x8+x8﹣x8﹣x8=0.
11.解:(1)

=﹣4x5y3+9x4y2﹣2x2y;
(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)
=2x2+x﹣2x﹣1﹣2(x2+2x﹣5x﹣10)
=2x2﹣x﹣1﹣2x2+6x+20
=5x+19.
12.解:原式=a2b2(﹣a2b﹣12ab+b2)
=a2b2 (﹣a2b)﹣a2b2 12ab+a2b2 b2
=﹣8a4b3﹣a3b3+a2b4.
13.解:(1)(x3+mx+n)(x2﹣3x+4),
=x5﹣3x4+4x3+mx3﹣3mx2+4mx+nx2﹣3nx+4n,
=x5﹣3x4+(4+m)x3+(n﹣3m)x2+(4m﹣3n)x+4n,
由题意得:,
解得:,
(2)(m+n)(m2﹣mn+n2),
=m3+n3,
当m=﹣4,n=﹣12时,原式=(﹣4)3+(﹣12)3=﹣64﹣1728=﹣1792.
14.解:(1)原式=﹣10m2n3+8m3n2;
(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.
15.解:(x2+mx+n)(x﹣1)=x3+(m﹣1)x2+(n﹣m)x﹣n.
∵结果中不含x2的项和x项,
∴m﹣1=0且n﹣m=0,
解得:m=1,n=1.
16.解:原式=6a2×ab﹣6a2×b2﹣2a2b×a+2a2b×b
=2a3b﹣6a2b2﹣2a3b+2a2b2
=﹣4a2b2.
17.解:(1)(﹣4ab3)(﹣ab)﹣(ab2)2;
=(﹣4ab3)(﹣ab)﹣a2b4;
=a2b4﹣a2b4;
=a2b4;
(2)(1.25×108)×(﹣8×105)×(﹣3×103).
=1.25×(﹣8)×(﹣3)×108×105×103
=30×1016
=3×1017.
18.解:(1)(x3+mx+n)(x2﹣3x+4)
=x5﹣3x4+(m+4)x3+(n﹣3m)x2+(4m﹣3n)x+4n,
根据展开式中不含x2和x3项得:,
解得:.
即m=﹣4,n=﹣12;
(2)∵(m+n)(m2﹣mn+n2)
=m3﹣m2n+mn2+m2n﹣mn2+n3
=m3+n3,
当m=﹣4,n=﹣12时,
原式=(﹣4)3+(﹣12)3=﹣64﹣1728=﹣1792.
19.解:(﹣2xy)2 (3xy2)﹣3x(4x2y4﹣xy2)
=(4x2y2) (3xy2)﹣12x3y4+3x2y2
=12x3y4﹣12x3y4+3x2y2
=3x2y2.
20.解:(1)原式=x3﹣x2﹣x3+x2+x=x;
(2)原式=4a2b4+12a3b2.
21.解:原式=x2+2x+1﹣2x2+x﹣2x+1
=﹣x2+x+2,
当x2﹣x+1=0,即﹣x2+x=1时,原式=1+2=3.
22.解:[xy(x2﹣xy)﹣x2y(x﹣y)] 3xy2
=(x3y﹣x2y2﹣x3y+x2y2) 3xy2
=0.
23.解:(x+5)(2x﹣3)﹣2x(x2﹣2x+3)
=2x2﹣3x+10x﹣15﹣2x3+4x2﹣6x
=﹣2x3+6x2+x﹣15.