青岛版数学九年级上册 4.7一元二次方程的应用(第2课时)(共25张)

文档属性

名称 青岛版数学九年级上册 4.7一元二次方程的应用(第2课时)(共25张)
格式 pptx
文件大小 209.1KB
资源类型 教案
版本资源 青岛版
科目 数学
更新时间 2021-11-29 19:17:14

图片预览

文档简介

(共25张PPT)
4.7一元二次方程的应用(2)
学习目标
1.掌握建立数学模型以解决增长率与降低率问题.(重点)
2.正确分析问题中的数量关系并建立一元二次方程模型.(难点)
导入新课
问题引入
小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是80分,第二次月考增长了10%,第三次月考又增长了10%,问他第三次数学成绩是多少?
填空:假设某种糖的成本为每斤2元,售价为3元时,可卖100斤.
(1)此时的利润w=_____;
(2)若售价涨了1元,每斤利润为_____元,同时少买了10斤,销售量为_____斤,利润w=____
(3)若售价涨了2元,每斤利润为_____元,同时少买了20斤,销售量为____斤,利润w=_____
100元
2
90
180元
3
80
240元
讲授新课
合作探究
平均变化率问题与一元二次方程
(4)若售价涨了3元,每斤利润为____元,
同时少买了30斤,销售量为____斤,
利润w=______
(5)若售价涨了4元,每斤利润为____元,
同时少买了40斤,销售量为____斤,
利润w=_______
(6)若售价涨了x元,每斤利润为____元,
同时少买了____斤,销售量为_______ 斤,
利润w=__________________
4
5
1+x
70
60
100-10x
10x
280元
300元
(1+x)×(100-10x)元
涨价 售价 成本 单件利润 少卖量 销售量 总利润
3+x
3-2+x
10x
100-10x
w=(3-2+x)×
(100-10x)
试一试:假设某种糖的成本每斤为2元,售价为3元时,可卖100斤.每涨1元,少卖10斤.设利润为x元,则总利润w为多少元(用含有x的式子表示出来)?
0
1
2
3
4
x
2
2
2
2
2
2
3
3+1
3+2
3+3
3+4
0
3-2
3-2+1
3-2+2
3-2+3
3-2+4
10×4
10×3
10×2
10×1
100
100-10×1
100-10×2
100-10×3
100-10×4
w=(3-2) ×100
w=(3-2+1)×
(100-10×1)
w=(3-2+3)×
(100-10×3)
w=(3-2+4)×
(100-10×4)
w=(3-2+2)×
(100-10×2)
每 涨 一 元
少 卖 十 斤
涨价 售价 成本 单件利润 少卖量 销售量 总利润
3+x
3-2+x
10x
100-10x
w=(3-2+x)×
(100-10x)
0
1
2
3
4
x
2
2
2
2
2
2
3
3+1
3+2
3+3
3+4
0
3-2
3-2+1
3-2+2
3-2+3
3-2+4
10×4
10×3
10×2
10×1
100
100-10×1
100-10×2
100-10×3
100-10×4
w=(3-2) ×100
w=(3-2+1)×
(100-10×1)
w=(3-2+3)×
(100-10×3)
w=(3-2+4)×
(100-10×4)
w=(3-2+2)×
(100-10×2)
每 涨 一 元
少 卖 十 斤
总利润
(售价-进价) × 销售量 = 总利润
单件利润
×
销售量
=
填空:
1. 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,去年生产1吨甲种药品的成本是4650 元,则下降率是 .如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.
探究归纳
7%
4324.5
下降率=
下降前的量-下降后的量
下降前的量
2. 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,设下降率是x,则去年生产1吨甲种药品的成本是 元,如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.
下降率x
第一次降低前的量
5000(1-x)
第一次降低后的量
5000
下降率x
第二次降低后的量
第二次降低前的量
5000(1-x)(1-x)
5000(1-x)2
5000(1-x)
5000(1-x)2
例1 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,试求甲种药品成本的年平均下降率是多少?
解:设甲种药品的年平均下降率为x.根据题意,列方程,得
5 000 ( 1-x )2 = 3000,
解方程,得
x1≈0.225,x2≈1.775.
根据问题的实际意义,甲种药品成本的年平均下降率约为22.5%.
下降率不可为负,且不大于1.
注意
练一练:前年生产1吨乙种药品的成本是6000元.随着生产技术的进步,现在生产1吨乙种药品的成本是3600元,试求乙种药品成本的年平均下降率?
解:设乙种药品的年平均下降率为y.根据题意,列方程,得
6 000 ( 1-y )2 = 3 600.
解方程,得
y1≈0.225,y2≈-1.775.
根据问题的实际意义,乙种药品成本的年平均下降率约为22.5%.
解后反思
答:不能.绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元,乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然,乙种药品成本的年平均下降额较大.
问题1 药品年平均下降额大能否说年平均下降率(百分数)就大呢?
答:不能. 能过上面的计算,甲、乙两种药品的年平均下降率相等.因此我们发现虽然绝对量相差很多,但其相对量(年平均下降率)也可能相等.
问题2 从上面的绝对量的大小能否说明相对量的大小呢 也就说能否说明乙种药品成本的年平均下降率大呢
问题3 你能总结出有关增长率和降低率的有关数量关系吗?
类似地 这种增长率的问题在实际生活中普遍存在,有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(其中增长取“+”,降低取“-”).
变式1:某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%)
解:设原价为1个单位,每次降价的百分率为 x.
根据题意,得
解这个方程,得
答:每次降价的百分率为29.3%.
变式2:某药品两次升价,零售价升为原来的 1.2倍,已知两次升价的百分率一样,求每次升价的百分率(精确到0.1%)
解:设原价为a元,每次升价的百分率为x ,
根据题意,得
解这个方程,得
由于升价的百分率不可能是负数,
所以 (不合题意,舍去)
答:每次升价的百分率为9.5%.
例2 某公司去年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.
解:设这个增长率为x.根据题意,得
答:这个增长率为50%.
200+200(1+x) +200(1+x)2=950
整理方程,得
4x2+12x-7=0,
解这个方程得
x1=-3.5(舍去),x2=0.5.
增长率不可为负,但可以超过1.
注意
例3:百佳超市将进货单价为40元的商品按50元出售时,能卖500个,已知该商品要涨价1元,其销售量就要减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?
分析:设商品单价为(50+x)元,则每个商品得利润[(50+x)-40]元,因为每涨价1元,其销售会减少10,则每个涨价x元,其销售量会减少10x个,故销售量为(500-10x)个,根据每件商品的利润×件数=8000,则(500-10x)· [(50+x)-40]=8000.
解:设每个商品涨价x元,则销售价为(50+x)元,销售量为(500-10x)个,则
(500-10x)· [(50+x)-40]=8000,
整理得 x2-40x+300=0,
解得x1=10,x2=30都符合题意.
当x=10时,50+x =60,500-10 x=400;
当x=30时,50+x =80, 500-10 x=200.
答:要想赚8000元,售价为60元或80元;若售价为60元,则进贷量应为400;若售价为80元,则进贷量应为200个.
当堂练习
1.某厂今年一月份的总产量为500吨,三月份的总产量为720吨,平均每月增长率是x,列方程( )
A.500(1+2x)=720 B.500(1+x)2=720
C.500(1+x2)=720 D.720(1+x)2=500
2.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为 .
B
2(1+x)+2(1+x)2=8
3.青山村种的水稻去年平均每公顷产7200千克,今年平均每公顷产8712千克,求水稻每公顷产量的年平均增长率.
解:设水稻每公顷产量的平均增长率为x,
根据题意,得
系数化为1得,
直接开平方得,

答:水稻每公顷产量的年平均增长率为10%.
7200(1+x)2=8712
(1+x)2=1.21
1+x=1.1,
1+x=-1.1
x1=0.1,
x2=-1.1,
解:设每件衬衫降价x元,根据题意得:
(40-x)(20+2x)=1200
整理得,x2-30x+200=0
解方程得,x1=10,x2=20
因为要尽快减少库存,所以x=10舍去.
答:每件衬衫应降价20元.
4.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
能力提升:菜农李伟种植的某蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.
(1)求平均每次下调的百分率;
解:设平均每次下调的百分率为x,
由题意,得
5(1-x)2=3.2,
解得 x1=20%,x2=1.8 (舍去)
∴平均每次下调的百分率为20%;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.
解:小华选择方案一购买更优惠,理由如下:
方案一所需费用为:3.2×0.9×5000=14400(元);
方案二所需费用为:3.2×5000-200×5=15000(元),
∵14400<15000,
∴小华选择方案一购买更优惠.
课堂小结
平均变化率问题
增长率问题
a(1+x)2=b,其中a为增长前的量,x为增长率,2为增长次数,b为增长后的量.
降低率问题
a(1-x)2=b,其中a为降低前的量,x为降低率,2为降低次数,b为降低后的量.注意1与x位置不可调换.