2021-2022学年人教版八年级数学上册《14.1整式的乘法》同步练习题(附答案)
1.计算a6×(﹣a2)的结果是( )
A.a4 B.﹣a8 C.a8 D.﹣a4
2.已知x+y﹣3=0,则2y 2x的值是( )
A.6 B.﹣6 C. D.8
3.化简(﹣x)3(﹣x)2,结果正确的是( )
A.﹣x6 B.x6 C.x5 D.﹣x5
4.已知a=8131,b=2741,c=961,则a,b,c的大小关系是( )
A.a>b>c B.a>c>b C.a<b<c D.b>c>a
5.已知10x=m,10y=n,则102x+3y等于( )
A.2m+3n B.m2+n2 C.6mn D.m2n3
6.计算(﹣xy2)3,结果正确的是( )
A.x3y5 B.﹣x3y6 C.x3y6 D.﹣x3y5
7.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为( )
A.﹣3 B.﹣1 C.1 D.5
8.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为( )
A.M<N B.M>N C.M=N D.不能确定
9.计算(﹣x)2 x3的结果为( )
A.﹣x5 B.﹣x6 C.x5 D.x6
10.已知xa=2,xb=5,则xa+b=( )
A.7 B.10 C.20 D.50
11.若x,y均为正整数,且2x+1 4y=128,则x+y的值为( )
A.3 B.5 C.4或5 D.3或4或5
12.已知:2m+3n=5,则4m 8n=( )
A.16 B.25 C.32 D.64
13.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )
A.﹣3 B.3 C.0 D.1
14.计算的结果是( )
A. B. C. D.
15.如果(x2+px+q)(x2﹣5x+7)的展开式中不含x2与x3项,那么p与q的值是( )
A.p=5,q=18 B.p=﹣5,q=18 C.p=﹣5,q=﹣18 D.p=5,q=﹣18
16.计算:(﹣3)2023 (﹣)2021= .
17.若a2n=5,b2n=16,则(ab)n= .
18.若ax=2,ay=3,则a2x+y= .
19.计算:(﹣5a4) (﹣8ab2)= .
20.已知xm=5,xn=7,求x2m+n的值.
21.若2 8n 16n=222,求n的值.
22.计算3x3y3 (﹣x2y2)+(﹣x2y)3 9xy2.
23.先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.
24.计算:
25.计算:
(1)(﹣2xy2)2 3x2y;
(2)(﹣2a2)(3ab2﹣5ab3)
26.计算:
(1)(﹣2x)3(2x3﹣x﹣1)﹣2x(2x3+4x2);
(2)(x+3)(x﹣7)﹣x(x﹣1).
27.(1)已知10m=4,10n=5,求10m+n的值.
(2)如果a+3b=4,求3a×27b的值.
28.已知2x+3y﹣3=0,求9x 27y的值.
29.计算:(﹣2x2y)3 3(xy2)2.
30.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.
31.比较3555,4444,5333的大小.
参考答案
1.解:a6×(﹣a2)=﹣a8,
故选:B.
2.解:∵x+y﹣3=0,
∴x+y=3,
∴2y 2x=2x+y=23=8,
故选:D.
3.解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.
故选:D.
4.解:∵a=8131=(34)31=3124
b=2741=(33)41=3123;
c=961=(32)61=3122.
则a>b>c.
故选:A.
5.解:102x+3y=102x 103y=(10x)2 (10y)3=m2n3.
故选:D.
6.解:原式=﹣()3x3y6=﹣x3y6.
故选:B.
7.解:∵m+n=2,mn=﹣2,
∴(1﹣m)(1﹣n),
=1﹣(m+n)+mn,
=1﹣2﹣2,
=﹣3.
故选:A.
8.解:M=(x﹣3)(x﹣7)=x2﹣10x+21,
N=(x﹣2)(x﹣8)=x2﹣10x+16,
M﹣N=(x2﹣10x+21)﹣(x2﹣10x+16)=5,
则M>N.
故选:B.
9.解:(﹣x)2 x3=x2 x3=x2+3=x5.
故选:C.
10.解:∵xa=2,xb=5,
∴xa+b=xa xb=2×5=10.
故选:B.
11.解:∵2x+1 4y=2x+1+2y,27=128,
∴x+1+2y=7,即x+2y=6
∵x,y均为正整数,
∴或
∴x+y=5或4,
故选:C.
12.解:4m 8n=22m 23n=22m+3n=25=32,
故选:C.
13.解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,
又∵(x+m)与(x+3)的乘积中不含x的一次项,
∴3+m=0,
解得m=﹣3.
故选:A.
14.解:
=
=
=1×
=.
故选:A.
15.解:∵(x2+px+q)(x2﹣5x+7)=x4+(p﹣5)x3+(7﹣5p+q)x2+(7p﹣5q)x+7q,
又∵展开式中不含x2与x3项,
∴p﹣5=0,7﹣5p+q=0,
解得p=5,q=18.
故选:A.
16.解:(﹣3)2023×(﹣)2021
=(﹣3)2×(﹣3)2021×(﹣)2021
=(﹣3)2×[﹣3×(﹣)]2021
=(﹣3)2
=9,
故答案为:9.
17.解:∵a2n=5,b2n=16,
∴(an)2=5,(bn)2=16,
∴,
∴,
故答案为:.
18.解:∵ax=2,ay=3,
∴a2x+y=a2x ay,
=(ax)2 ay,
=4×3,
=12.
19.解:(﹣5a4) (﹣8ab2)=40a5b2.
故答案为:40a5b2.
20.解:∵xm=5,xn=7,
∴x2m+n=xm xm xn=5×5×7=175.
21.解:2 8n 16n,
=2×23n×24n,
=27n+1,
∵2 8n 16n=222,
∴7n+1=22,
解得n=3.
22.解:原式=3x3y3 (﹣x2y2)+(﹣x6y3) 9xy2
=﹣2x5y5﹣x7y5.
23.解:3a(2a2﹣4a+3)﹣2a2(3a+4)
=6a3﹣12a2+9a﹣6a3﹣8a2
=﹣20a2+9a,
当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.
24.解:原式=a2b2(﹣a2b﹣12ab+b2)
=a2b2 (﹣a2b)﹣a2b2 12ab+a2b2 b2
=﹣8a4b3﹣a3b3+a2b4.
25.解:(1)(﹣2xy2)2 3x2y
=4x2y4 3x2y
=12x4y5;
(2)(﹣2a2)(3ab2﹣5ab3)
=﹣2a2×3ab2﹣2a2×(﹣5ab3)
=﹣6a3b2+10a3b3.
26.解:(1)原式==﹣16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;
(2)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.
27.解:(1)10m+n=10m 10n=5×4=20;
(2)3a×27b=3a×33b=3a+3b=34=81.
28.解:∵2x+3y﹣3=0,
∴2x+3y=3,
则9x 27y=32x 33y=32x+3y=33=27.
故答案为:27.
29.(1)原式=﹣8x6y3 3x2y4=﹣24x8y7.
30.解:(x﹣1)(x﹣2)﹣(x+1)2,
=x2﹣2x﹣x+2﹣x2﹣2x﹣1
=﹣5x+1
当x=时,
原式=﹣5×+1
=﹣.
31.解:∵3555=35×111=(35)111=243111,
4444=44×111=(44)111=256111,
5333=53×111=(53)111=125111,
又∵256>243>125,
∴256111>243111>125111,
即4444>3555>5333.