2021-2022学年鲁教版六年级数学上册《3.6整式的加减》同步达标训练(附答案)
1.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为( )
A.A<B B.A=B C.A>B D.无法比较
2.若x+y=2,z﹣y=﹣3,则x+z的值等于( )
A.5 B.1 C.﹣1 D.﹣5
3.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|a﹣1|+|b+2|的结果是( )
A.1 B.2b+3 C.2a﹣3 D.﹣1
4.多项式3(x2+2xy)﹣(2x2﹣2mxy)中不含xy项,则m= .
5.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m= .
6.已知x+y=3,xy=1,则代数式(5x+3)﹣(2xy﹣5y)的值为 .
7.若x+y=3,xy=2,则(x+2)+(y﹣2xy)= .
8.先化简,再求值:(2x2﹣2y2)﹣3(xy3+x2)+3(xy3+y2),其中x=﹣1,y=2.
9.先化简,再求值:5(a2﹣4ab)﹣2(a2﹣8ab+1),其中.
10.先化简,再求值:2(xy+5x2y)﹣3(3xy2﹣xy)﹣xy2,其中x,y满足x=﹣1,y=﹣.
11.化简求值:已知A=﹣a2+2ab+2b2,B=2a2﹣2ab﹣b2,当a=﹣,b=1时,求2A+B的值.
12.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.
13.先化简,再求值:2ab2﹣[a3b+2(ab2﹣a3b)]﹣5a3b,其中a=﹣2,b=.
14.已知A=x3﹣5x2,B=x2﹣11x+6,当x=﹣1时,求:﹣(A+3B)+2(A﹣B)的值.
15.先化简,再求值
(1)﹣(4a2+2a﹣1)+3a2﹣3a,其中a=﹣.
(2)(3m2﹣mn+5)﹣2(5mn﹣4m2+2),其中m2﹣mn=2.
16.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.
17.先化简,再求值:
(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.
(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.
18.已知A=3a2b﹣ab2,B=ab2+2a2b,求5A﹣3B的值,其中a=﹣1,b=﹣2.
19.一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”,求得的结果为9x2﹣2x+7.已知B=x2+3x﹣2,求正确答案.
20.计算:
(1)(2x﹣3y)﹣2(x+2y);
(2)3x2﹣[2x﹣(x﹣5)﹣x2].
21.先化简,再求值:
(1)2(2x﹣3y)﹣(3x+2y+3),其中x=2,y=﹣;
(2)4x﹣2(x﹣3)﹣3[x﹣3(4﹣2x)+8],其中x=2.
22.已知A=a2﹣2ab+b2,B=a2+2ab+b2.
(1)求A﹣B;
(2)现有2A+B﹣C=0,当a=2,b=﹣时,求C的值.
23.先化简,再求值:5x2﹣3(2x2+4y)+2(x2﹣y),其中x=﹣2,.
24.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.
25.化简与求值:
(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);
(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);
(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.
(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B的值.
26.若关于x、y的多项式A=(3x3﹣mx+4y2)﹣(2x3﹣5x+ny2)化简后不含一次项和二次项,求:m2+n2的值.
27.已知A=2xy﹣2y2+8x2,B=9x2+3xy﹣5y2.求:(1)A﹣B;(2)﹣3A+2B.
28.一辆公交车上原来有(6a﹣6b)人,中途下去一半,又上来若干人,使车上共有乘客(10a﹣6b)人,问上车的乘客是多少人?当a=3,b=2时,上车的乘客是多少人?
参考答案
1.解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,
∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)
=2x2﹣3x﹣1﹣x2+3x+2
=x2+1,
∵x2≥0,
∴B﹣A>0,
则B>A,
故选:A.
2.解:∵x+y=2,z﹣y=﹣3,
∴(x+y)+(z﹣y)=2+(﹣3),
整理得:x+y+z﹣y=2﹣3,即x+z=﹣1,
则x+z的值为﹣1.
故选:C.
3.解:由数轴可知﹣2<b<﹣1,1<a<2,且|a|>|b|,
∴a+b>0,
则|a+b|﹣|a﹣1|+|b+2|=a+b﹣(a﹣1)+(b+2)=a+b﹣a+1+b+2=2b+3.
故选:B.
4.解:3(x2+2xy)﹣(2x2﹣2mxy)
=3x2+6xy﹣2x2+2mxy
=x2+(6+2m )xy
∵多项式3(x2+2xy)﹣(2x2﹣2mxy)中不含xy项,
∴6+2m=0,
解得m=﹣3.
故答案为:﹣3.
5.解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,
由于多项式中不含有ab项,
故﹣(6+m)=0,
∴m=﹣6,
故填空答案:﹣6.
6.解:原式=5x+3﹣2xy+5y
=5(x+y)﹣2xy+3
当x+y=3,xy=1时,
原式=15﹣2+3
=16.
故答案为:16.
7.解:(x+2)+(y﹣2xy)
=x+y﹣2xy+2
∵x+y=3,xy=2,
∴原式=3﹣4+2
=1.
故答案为:1.
8.解:原式=2x2﹣2y2﹣3xy3﹣3x2+3xy3+3y2
=﹣x2+y2,
当x=﹣1,y=2时,原式=﹣1+4=3.
9.解:原式=5a2﹣20ab﹣2a2+16ab﹣2
=3a2﹣4ab﹣2
当a=,b=﹣6时,
原式=3×﹣4×﹣2
=+16﹣2
=.
10.解:原式=2xy+10x2y﹣9xy2+3xy﹣xy2
=10x2y﹣10xy2+5xy,
当x=﹣1,y=﹣时,
原式=10×(﹣1)2×(﹣)﹣10×(﹣1)×(﹣)2+5×(﹣1)×(﹣)
=﹣5﹣(﹣)+
=﹣5++
=0.
11.解:2A+B
=2(﹣a2+2ab+2b2)+(2a2﹣2ab﹣b2)
=﹣2a2+4ab+4b2+2a2﹣2ab﹣b2
=2ab+3b2,
当a=,b=1时,
原式=﹣1+3
=2.
12.解:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)
=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2
=﹣6xy
当x=1,y=﹣2时,原式=﹣6×1×(﹣2)=12.
13.解:2ab2﹣[a3b+2(ab2﹣a3b)]﹣5a3b
=2ab2﹣a3b﹣2(ab2﹣a3b)﹣5a3b
=2ab2﹣a3b﹣2ab2+a3b﹣5a3b
=﹣5a3b,
当a=﹣2,b=时,
原式=﹣5×(﹣2)3×
=8.
14.解:解法一:∵A=x3﹣5x2,B=x2﹣11x+6,
∴﹣(A+3B)+2(A﹣B),
=﹣A﹣3B+2A﹣2B,
=A﹣5B,
=x3﹣5x2﹣5(x2﹣11x+6),
=x3﹣5x2﹣5x2+55x﹣30,
=x3﹣10x2+55x﹣30,
当x=﹣1时,原式=(﹣1)3﹣10×(﹣1)2+55×(﹣1)﹣30=﹣96.
解法二:当x=﹣1时,A=x3﹣5x2=﹣1﹣5=﹣6,B=x2﹣11x+6=1+11+6=18,
∴﹣(A+3B)+2(A﹣B),
=﹣A﹣3B+2A﹣2B,
=A﹣5B,
=﹣6﹣5×18,
=﹣96.
15.解:(1)原式=﹣6a2﹣3a++3a2﹣3a
=﹣3a2﹣6a+,
当a=﹣时,
原式=﹣3×(﹣)2﹣6×(﹣)+
=﹣+4+
=4;
(2)原式=3m2﹣mn+5﹣10mn+8m2﹣4
=11m2﹣11mn+1
=11(m2﹣mn)+1,
当m2﹣mn=2时,原式=22+1=23.
16.解:原式=4xy﹣2x2﹣5xy+y2+2x2+6xy
=5xy+y2,
当x=1,y=﹣2时,
原式=5×1×(﹣2)+(﹣2)2
=﹣10+4
=﹣6.
17.解:(1)原式=2x3﹣7x2+9x﹣2x3+6x2﹣8x=﹣x2+x,
当x=﹣1时,原式=﹣1﹣1=﹣2;
(2)原式=3x2﹣6xy﹣x2+6xy﹣4y=2x2﹣4y=2(x2﹣2y),
由x2﹣2y﹣5=0,得到x2﹣2y=5,
则原式=10.
18.解:法一、5A﹣3B
=5(3a2b﹣ab2)﹣3(ab2+2a2b)
=9a2b﹣8ab2.
当 x=﹣1,y=﹣2 时,上式=14.
法 二、当 x=﹣1,y=﹣2 时,则A=﹣2,B=﹣8,
∴5A﹣3B=14.
19.根据题意得A=9x2﹣2x+7﹣2(x2+3x﹣2)
=9x2﹣2x+7﹣2x2﹣6x+4
=(9﹣2)x2﹣(2+6)x+4+7
=7x2﹣8x+11.
∴2A+B=2(7x2﹣8x+11)+x2+3x﹣2
=14x2﹣16x+22+x2+3x﹣2
=15x2﹣13x+20.
20.解:(1)(2x﹣3y)﹣2(x+2y)
=2x﹣3y﹣2x﹣4y
=﹣7y;
(2)3x2﹣[2x﹣(x﹣5)﹣x2]
=3x2﹣(2x﹣x+5﹣x2)
=3x2﹣2x+x﹣5+x2
=4x2﹣x﹣5.
21.解:(1)原式=4x﹣6y﹣3x﹣2y﹣3
=x﹣8y﹣3,
当x=2,y=﹣时,原式=2+4﹣3=3;
(2)原式=4x﹣2x+6﹣3x+36﹣18x﹣24
=﹣19x+18,
当x=2时,原式=﹣38+18=﹣20.
22.解:(1)∵A=a2﹣2ab+b2,B=a2+2ab+b2,
∴A﹣B=(a2﹣2ab+b2)﹣(a2+2ab+b2)
=a2﹣2ab+b2﹣a2﹣2ab﹣b2
=﹣4ab.
(2)∵2A+B﹣C=0,
∴C=2A+B
=2(a2﹣2ab+b2)+(a2+2ab+b2)
=2a2﹣4ab+2b2+a2+2ab+b2
=3a2﹣2ab+3b2,
当a=2,b=时,
原式=3×4﹣2×2×(﹣)+3×
=12+2+
=14.
23.解:原式=5x2﹣6x2﹣12y+2x2﹣2y
=x2﹣14y,
当x=﹣2,时,
原式=(﹣2)2﹣14×
=4﹣2
=2.
24.解:原式=12a2+6a﹣2a2﹣3a+5
=10a2+3a+5.
当a=﹣2时,
原式=10×(﹣2)2+3×(﹣2)+5
=40﹣6+5
=39.
25.解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)
=5a+4c+7b+5c﹣3b﹣6a
=5a﹣6a+7b﹣3b+4c+5c
=﹣a+4b+9c;
(2)(2a2b﹣ab2)﹣2(ab2+3a2b)
=2a2b﹣ab2﹣2ab2﹣6a2b
=2a2b﹣6a2b﹣ab2﹣2ab2
=﹣4a2b﹣3ab2;
(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)
=4xy﹣2x2﹣5xy+y2+2x2+6xy
=y2+5xy,
当x=1,y=﹣2时
原式=(﹣2)2+5×1×(﹣2)
=4﹣10
=﹣6;
(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)
=8x2y﹣10xy2﹣3x2y+4y2
=5x2y﹣10xy2+4y2
当x=﹣2,y=1时,
原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12
=5×4×1﹣(﹣20)×1+4
=20+20+4
=44.
26.解:A=(3x3﹣mx+4y2)﹣(2x3﹣5x+ny2),
=3x3﹣mx+4y2﹣2x3+5x﹣ny2,
=x3+(5﹣m)x+(4﹣n)y2,
∵化简后不含一次项和二次项,
∴5﹣m=0,4﹣n=0,
∴m=5,n=4,
∴m2+n2=25+16=41.
27.解:由题意得:(1)A﹣B=(2xy﹣2y2+8x2)﹣(9x2+3xy﹣5y2)=2xy﹣2y2+8x2﹣9x2﹣3xy+5y2=﹣x2﹣xy+3y2.
(2)﹣3A+2B=﹣3(2xy﹣2y2+8x2)+2(9x2+3xy﹣5y2)=﹣6xy+6y2﹣24x2+18x2+6xy﹣10y2=﹣4y2﹣6x2.
28.解:由题意可得,
(10a﹣6b)﹣[(6a﹣6b)﹣(6a﹣6b)]
=10a﹣6b﹣3a+3b
=7a﹣3b,
即上车的乘客是(7a﹣3b)人,
当a=3,b=2时,7a﹣3b=7×3﹣3×2=15(人),
即当a=3,b=2时,上车的乘客是15人.