2021-2022学年鲁教版六年级数学上册《3.6整式的加减》同步练习题(附答案)
1.下面是小强做的一道多项式的加减运算题,由于他不小心把一滴墨水滴在了上面:(﹣x2+3xy﹣y2)﹣2(﹣x2+4xy﹣y2)=﹣5xy+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 .
2.若关于a,b的两个多项式a2+2ab﹣b2与﹣2a2+mab+2b2的和是二次二项式,则m的值为 .
3.若关于x,y的多项式3(x2+2xy﹣y2)﹣2(x2﹣nxy)﹣xy中不含xy项,则n的值是 .
4.若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x﹣5y﹣1)的值与字母x的取值无关,则代数式a2b的值为 .
5.已知代数式A=2x2+4xy﹣3y+3,B=x2﹣xy+2,若A﹣2B的值与y的取值无关,则x的值为 .
6.已知关于x,y的多项式x2+mx﹣2y+n与nx2﹣3x+4y﹣7的差的值与字母x的取值无关,则n﹣m= .
7.已知多项式4x2﹣2kxy﹣3(x2﹣5xy+x)不含xy项,则k的值为 .
8.若多项式3x2﹣kxy﹣5与12xy﹣y2+3的和中不含xy项,则k的值是 .
9.若多项式2(x2﹣xy﹣3y2)﹣(3x2﹣axy+y2)中不含xy项,则a= .
10.如果多项式4x2﹣7x2+6x﹣5x+2与多项式ax2+bx+c(其中a,b,c是常数)相等,则a= ,b= ,c= .
11.如果x=﹣2,y=,那么代数式(4x2﹣3xy)﹣3(x2﹣xy)的值是 .
12.若关于x、y的代数式2mx3﹣nxy2与2x3﹣xy2+y的和不含三次项,则(2m﹣n)2021= .
13.化简并求值4xy+[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=,y=﹣1.
14.化简求值:﹣8x2+3y2﹣(2y2﹣3x2)﹣3(y2﹣2x2),其中x=﹣1,y=2.
15.先化简再求值:
(1)2(a2b+ab2)﹣2(a2b﹣1)﹣2ab2﹣2ab,其中a=﹣2,b=2;
(2)已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.
16.已知A=3x2+bx+2y﹣xy,B=ax2﹣3x﹣y+xy.
(1)若A+B的值与x无关,求ab.
(2)若|a﹣2|+(b+1)2=0且x+y=,xy=﹣2时,求2A﹣3B的值.
17.先化简,再求值:2ab2﹣[6a3b+2(ab2﹣a3b)],其中a=﹣2,b=.
18.若A=x2﹣3x+6,B=5x2﹣x﹣6,请计算:A﹣2B,并求当x=﹣1时,A﹣2B的值.
19.已知关于x、y的式子(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与x无关,求a、b的值,并求出3(a2﹣2ab﹣b2)﹣2(a2+ab+b)的值.
20.求代数式3a2b﹣[2ab﹣2(ab﹣a2b)+a2b3]的值,其中a,b满足关系式|a+1|+(b﹣2)2=0.
21.解答下列问题.
(1)先化简,再求值:x2﹣2(x2+y)﹣(﹣3x2+y),其中x=﹣5,y=2;
(2)已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A﹣(B+C)的值,其中x=﹣2.
22.化简求值:
已知x1﹣my2与﹣x3yn+1是同类项,求5m2﹣[2mn﹣3(mn+2)+8m2]的值.
23.先化简再求值:已知﹣2(xy﹣x2y)+yx﹣2x2y,其中x=,y=﹣2.
24.先化简,再求值:2(a2﹣2ab)﹣[a2﹣2b+2(ab+b)],其中a=﹣5,b=﹣.
25.先化简,再求值:(6x2﹣9xy)﹣(x2﹣xy)+(y2﹣x2),其中x=2,y=﹣1.
26.化简与求值:
(1)(2x3﹣2y2)﹣3(x3y2+x3)+2(y2+y2x3),其中x=﹣1,y=2.
(2)已知A=4x2+5y,B=﹣3x2﹣2y,求2A﹣B的值,其中x=2,y=1.
27.已知多项式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).
(1)若多项式的值与字母x的取值无关,求a,b的值;
(2)若M=a2﹣ab+b2,N=4a2+ab+3b2,在(1)的条件下,求3M﹣N的值.
28.已知A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3.
(1)若(x+y﹣)2+|xy+|=0,求3A﹣2(A+B)的值;
(2)若代数式3A﹣2(A+B)的值与字母x的取值无关,求y的值.
参考答案
1.解:∵(﹣x2+3xy﹣y2)﹣2(﹣x2+4xy﹣y2)=﹣5xy+y2,
∴﹣x2+3xy﹣y2+5x2﹣8xy+3y2=﹣5xy+y2,
4x2﹣5xy+y2=﹣5xy+y2,
故被墨汁遮住的一项应是4x2.
故答案为:4x2.
2.解:∵关于a,b的多项式a2+2ab﹣b2与﹣2a2+mab+2b2的和是二次二项式,
∴﹣a2+(m+2)ab+b2是二次二项式,
∴m+2=0,
解得:m=﹣2.
故答案为:﹣2.
3.解:3(x2+2xy﹣y2)﹣2(x2﹣nxy)﹣xy
=3x2+6xy﹣3y2﹣2x2+2nxy﹣xy
=x2+(5+2n)xy﹣3y2,
∵关于x,y的多项式3(x2+2xy﹣y2)﹣2(x2﹣nxy)﹣xy中不含xy项,
∴5+2n=0,
解得:n=﹣.
4.解:∵代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x﹣5y﹣1)的值与字母x的取值无关,
∴(2x2+ax﹣y+6)﹣(2bx2﹣3x﹣5y﹣1)
=2x2+ax﹣y+6﹣2bx2+3x+5y+1
=(2﹣2b)x2+(a+3)x+4y+7,
∴2﹣2b=0,a+3=0,
解得:b=1,a=﹣3,
∴a2b=(﹣3)2=9.
故答案为:9.
5.解:∵A=2x2+4xy﹣3y+3,B=x2﹣xy+2,
∴A﹣2B=2x2+4xy﹣3y+3﹣2(x2﹣xy+2)
=2x2+4xy﹣3y+3﹣2x2+2xy﹣4
=6xy﹣3y﹣1
=(6x﹣3)y﹣1;
∵A﹣2B的值与y的取值无关,
∴6x﹣3=0,解得:x=.
故答案为:.
6.解:x2+mx﹣2y+n﹣(nx2﹣3x+4y﹣7)
=x2+mx﹣2y+n﹣nx2+3x﹣4y+7
=(1﹣n)x2+(m+3)x+n﹣6y+7.
∵差与字母x的取值无关.
∴1﹣n=0,m+3=0.
∴n=1,m=﹣3.
∴n﹣m=4.
故答案为:4.
7.解:原式=4x2﹣2kxy﹣3x2+15xy﹣3x
=x2+(15﹣2k)xy﹣3x,
∵不含xy项,
∴15﹣2k=0,
解得:k=7.5,
故答案为:7.5.
8.解:(3x2﹣kxy﹣5)+(12xy﹣y2+3)
=3x2﹣kxy﹣5+12xy﹣y2+3
=3x2+(﹣k+12)xy﹣y2﹣2,
∵多项式3x2﹣kxy﹣5与12xy﹣y2+3的和中不含xy项,
∴﹣k+12=0,
解得k=8,
故答案为:8.
9.解:∵2(x2﹣xy﹣3y2)﹣(3x2﹣axy+y2)中不含xy项,
∴2x2﹣2xy﹣6y2﹣3x2+axy﹣y2
=﹣x2﹣7y2+(a﹣2)xy,
∴a﹣2=0,
解得:a=2.
故答案为:2.
10.解:4x2﹣7x2+6x﹣5x+2=﹣3x2+x+2,
∵两个多项式相等,
∴ax2+bx+c=﹣3x2+x+2,
∴a=﹣3,b=1,c=2.
故答案为:﹣3,1,2.
11.解:原式=4x2﹣3xy﹣3x2+xy
=x2﹣2xy,
当x=﹣2,y=时,
原式=(﹣2)2﹣2×(﹣2)×=4+2=6,
故答案为:6.
12.解:∵关于x、y的代数式2mx3﹣nxy2与2x3﹣xy2+y的和不含三次项,
∴2mx3﹣nxy2+2x3﹣xy2+y
=(2m+2)x3﹣(n+1)xy2+y,
则2m+2=0,n+1=0,
解得:m=﹣1,n=﹣1,
故(2m﹣n)2021=﹣1.
故答案为:﹣1.
13.解:原式=4xy+x2+5xy﹣y2﹣x2﹣3xy+2y2
=6xy+y2,
当x=,y=﹣1时,
原式=6×()×(﹣1)+(﹣1)2
=﹣2+1
=﹣1.
14.解:﹣8x2+3y2﹣(2y2﹣3x2)﹣3(y2﹣2x2)
=﹣8x2+3y2﹣2y2+3x2﹣3y2+6x2
=x2﹣2y2,
当x=﹣1,y=2时,
原式=1﹣2×4
=﹣7.
15.解:(1)原式=2a2b+2ab2﹣2a2b+2﹣2ab2﹣2ab
=2﹣2ab,
当a=﹣2,b=2时,原式=2﹣2×(﹣2)×2=2+8=10;
(2)∵(x+2)2+|y﹣|=0,
∴x+2=0,y﹣=0,
解得:x=﹣2,y=,
原式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2
=x2y﹣xy2+4,
当x=﹣2,y=时,原式=4×﹣(﹣2)×+4=2++4=6.
16.解:(1)∵A=3x2+bx+2y﹣xy,B=ax2﹣3x﹣y+xy,
∴A+B=(3x2+bx+2y﹣xy)+(ax2﹣3x﹣y+xy)=(3+a)x2+(b﹣3)x+y,
∵与x无关,
∴a=﹣3,b=3,
则ab=(﹣3)3=﹣27;
(2)∵|a﹣2|≥0,(b+1)2≥0,|a﹣2|+(b+1)2=0,
∴a=2,b=﹣1,
则2A﹣3B=2(3x2+bx+2y﹣xy)﹣3(ax2﹣3x﹣y+xy)
=(6﹣3a)x2+(2b+9)x+7y﹣5xy
=7x+7y﹣5xy
=7(x+y)﹣5xy,
当x+y=,xy=﹣2时,原式=7×﹣5×(﹣2)=6+10=16.
17.解:2ab2﹣[6a3b+2(ab2﹣a3b)]
=2ab2﹣(6a3b+2ab2﹣a3b)
=2ab2﹣6a3b﹣2ab2+a3b
=﹣5a3b.
当a=﹣2,b=时,原式==8.
18.解:A﹣2B=x2﹣3x+6﹣2(5x2﹣x﹣6)
=x2﹣3x+6﹣10x2+2x+12
=﹣9x2﹣x+18,
当x=﹣1时,
原式=﹣9×(﹣1)2﹣(﹣1)+18
=﹣9+1+18
=10.
19.解:(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)
=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1
=(2﹣2b)x2+(a+3)x﹣6y+7,
∵(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与x无关,
∴2﹣2b=0,a+3=0,
∴a=﹣3,b=1,
3(a2﹣2ab﹣b2)﹣2(a2+ab+b)
=3a2﹣6ab﹣3b2﹣2a2﹣2ab﹣2b
=a2﹣8ab﹣3b2﹣2b,
把a=﹣3,b=1代入得:
原式=(﹣3)2﹣8×(﹣3)×1﹣3×12﹣2×1
=9+24﹣3﹣2
=28.
20.解:∵|a+1|+(b﹣2)2=0,
∴a+1=0,b﹣2=0,
∴a=﹣1,b=2,
3a2b﹣[2ab﹣2(ab﹣a2b)+a2b3]
=3a2b﹣(2ab﹣2ab+3a2b+a2b3)
=3a2b﹣2ab+2ab﹣3a2b﹣a2b3
=﹣a2b3,
当a=﹣1,b=2时,
原式=﹣1×8=﹣8.
21.解:(1)x2﹣2(x2+y)﹣(﹣3x2+y)
=x2﹣2x2+y+3x2﹣y
=2x2﹣y,
当x=﹣5,y=2时,
原式=2×(﹣5)2﹣2=48;
(2)∵A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,
∴A﹣(B+C)
=(x3﹣2x2+4x+3)﹣[(x2+2x﹣6)+(x3+2x﹣3)]
=(x3﹣2x2+4x+3)﹣[x2+2x﹣6+x3+2x﹣3]
=x3﹣2x2+4x+3﹣x2﹣2x+6﹣x3﹣2x+3
=x3﹣x3﹣2x2﹣x2+4x﹣2x﹣2x+3+3+6
=﹣3x2+12,
当x=﹣2时,原式=﹣3×(﹣2)2+12=﹣12+12=0.
22.解:∵x1﹣my2与﹣x3yn+1是同类项,
∴1﹣m=3,n+1=2,
解得:m=﹣2,n=1,
原式=5m2﹣(2mn﹣mn﹣6+8m2)
=5m2﹣mn+6﹣8m2
=﹣3m2﹣mn+6,
当m=﹣2,n=1时,
原式=﹣3×(﹣2)2﹣(﹣2)×1+6
=﹣12+2+6
=﹣4.
23.解:﹣2(xy﹣x2y)+yx﹣2x2y
=﹣2xy+5x2y+xy﹣2x2y
=﹣xy+3x2y.
当x=,y=﹣2,原式=﹣×(﹣2)+3××(﹣2)=0.
24.解:2(a2﹣2ab)﹣[a2﹣2b+2(ab+b)]
=2a2﹣4ab﹣(a2﹣2b+2ab+2b)
=2a2﹣4ab﹣a2+2b﹣2ab﹣2b
=a2﹣6ab.
当a=﹣5,b=﹣,原式==19.
25.解:原式=2x2﹣3xy﹣x2+xy+y2﹣x2
=﹣2xy+y2,
当x=2,y=﹣1时,
原式=﹣2×2×(﹣1)+(﹣1)2
=4+1
=5.
26.解:(1)原式=2x3﹣2y2﹣3x3y2﹣3x3+2y2+2x3y2
=﹣x3﹣x3y2,
当x=﹣1,y=2时,
原式=﹣(﹣1)3﹣(﹣1)3×22=1+4=5;
(2)∵A=4x2+5y,B=﹣3x2﹣2y,
∴2A﹣B=2(4x2+5y)﹣(﹣3x2﹣2y)
=8x2+10y+3x2+2y
=11x2+12y,
当x=2,y=1时,
原式=11×22+12×1
=44+12
=56.
27.解:(1)原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1
=(2﹣2b)x2+(a+3)x﹣6y+7,
∵多项式的值与字母x的取值无关,
∴a+3=0,2﹣2b=0,
解得:a=﹣3,b=1;
(2)∵M=a2﹣ab+b2,N=4a2+ab+3b2,
∴3M﹣N
=3(a2﹣ab+b2)﹣(4a2+ab+3b2)
=3a2﹣3ab+3b2﹣4a2﹣ab﹣3b2
=﹣a2﹣4ab,
当a=﹣3,b=1时,
3M﹣N=﹣(﹣3)2﹣4×(﹣3)×1
=﹣9+12
=3.
28.解:(1)当A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3时,
原式=3A﹣2A﹣2B
=A﹣2B
=(2x2﹣x+y﹣4xy)﹣2(x2﹣2x﹣y﹣xy+3)
=2x2﹣x+y﹣4xy﹣2x2+4x+2y+2xy﹣6
=2x2﹣2x2+4x﹣x+y+2y+2xy﹣4xy﹣6
=3x+3y﹣2xy﹣6
=3(x+y)﹣2xy﹣6,
由题意可知:x+y﹣=0,xy+=0,
∴x+y=,xy=﹣,
∴原式=3×﹣2×()﹣6
=5+1﹣6
=0.
(2)3A﹣2(A+B)
=3x+3y﹣2xy﹣6
=(3﹣2y)x+3y﹣6,
令3﹣2y=0,
∴y=.