2021-2022学年鲁教版六年级数学上册《4.3一元一次方程的应用》同步达标训练(附答案)
1.一双鞋子如果卖150元,可赚50%,如果卖120元可赚( )
A.20% B.22% C.25% D.30%
2.某商品在进价的基础上提价20%后以96元的价格出售,则该商品的进价为( )
A.60元 B.70元 C.80元 D.86元
3.“五一”期间商场进行打折促销,一双皮鞋按原价的8折出售,现价为100元,则原价为( )
A.80元 B.125元 C.120元 D.145元
4.已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店( )
A.不盈不亏 B.盈利20元 C.盈利10元 D.亏损20元
5.一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的标价是3200元,则彩电的进价为多少元?设彩电的进价为x元/台,则可列方程为( )
A.3200×90%=20%x B.3200×90%=(1+20%)x
C.90%x=3200×20% D.90%x=3200×(1+20%)
6.为了双十一促销,宁波天一广场某品牌服装按原价第一次降价25%,第二次降价120元,此时该服装的利润率是15%.已知这种服装的进价为800元,那么这种服装的原价是多少?设这种服装的原价为x元,可列方程为( )
A. B.
C. D.
7.某种商品的进价为120元,若按标价九折降价出售,仍可获利20%,该商品的标价为( )
A.140元 B.150元 C.160元 D.170元
8.某商铺促销,单价80元的衬衫按照8折销售仍可获利10元,若这款衬衫的成本价为x元/件,则( )
A.80×0.8﹣x=10 B.(80﹣x)0.8﹣x=10
C.80×0.8=x﹣10 D.(80﹣x)×0.8=x﹣10
9.商场以八折的优惠价格每让利出售一件商品,就少赚15元,那么顾客买一件这种商品就只需付( )
A.35元 B.60元 C.75元 D.150元
10.某种商品每件的进价为250元,按标价的九折销售时,利润率为15.2%,这种商品每件的标价是( )
A.38元 B.250元 C.288元 D.320元
11.一家商店将某新款羽绒服先按进价提高50%标价,再按标价的八折销售,结果每件仍可获利50元,设这款羽绒服每件进价为x元,根据题意可列方程为( )
A.(1+50%)x×80%=x﹣50 B.(1+50%)x×80%=x+50
C.(1+50%x)×80%=x﹣50 D.(1+50%x)×80%=x+50
12.元旦前夕,某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.
(1)求甲、乙两种商品的每件进价分别是多少元?
(2)该商场从厂家购进了甲、乙两种商品共50件,所用资金恰好为4400元.在销售时,甲种商品的每件售价为100元,要使得这50件商品所获利润率为20%,每件乙商品的售价为多少元?
13.某商店为尽快卖出积压服装,准备进行大减价,若按定价的六五折出售将赔30元,按定价的八折出售将赚15元,这种商品的定价是多少元?
14.某商家在“5.17世界电信日”当天对某款手机进行打折促销,相比前一天销量增加了20%,销售额反而下降了16%,求“5.17世界电信日”当天商家对该款手机打几折销售.
15.双十一购物节.某网络商城推出了“每满300减40”的活动,某品牌微波炉按进价提高50%后标价,再按标价的八折销售,顾客在双十一期间购买该微波炉,最终付款640元.
(1)将表格补充完整;
应付金额(元) 0≤x<300 600≤x<900 900≤x<1200
减免金额(元) 0 40 120
(2)商家卖一个微波炉赚多少元?
16.农历六月六日水龙节是土家族等少数民族重要的民俗文化活动之一,在今年水龙节即将到来之前,德江县城一商店用1200元购进甲、乙两种型号的儿童玩具水枪共100支,两种儿童玩具水枪的进价和售价如下表.
型号 进价(元/支) 售价(元/支)
甲型 10 20
乙型 20 35
(1)求购进甲、乙两种儿童玩具水枪各为多少支?
(2)若全部售完这100支儿童玩具水枪,该商场获利润多少元?
17.某商店对A,B两种商品在进价的基础上提高50%作为标价出售.春节期间,该商店对A,B两种商品开展促销活动,活动方案如下:
商品 A B
标价(元/件) 150 225
春节期间每件商品出售的价格 按标价降价10% 按标价降价a%
(1)商品B降价后的售价为 元(用含a的代数式表示);
(2)不考虑其他成本,在春节期间商店卖出A种商品20件,B种商品10件,获得总利润1000元,试求a的值.
18.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
19.公园门票价格规定如下表:
购票张数 1~50张 51~100张 100张以上
每张票的价格 13元 11元 9元
某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.
经估算,如果两个班都以班为单位购票,则一共应付1240元,问:
(1)两班各有多少学生?
(2)如果两班联合起来,作为一个团体购票,可省多少钱?
(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?
20.已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)数轴上点B表示的数是 ;当点P运动到AB的中点时,它所表示的数是 .
(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:
①当点P运动多少秒时,点P追上点Q?
②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?
参考答案
1.解:设鞋子的原价为x元,
由题意得:x(1+50%)=150,
解得:x=100,
则(120﹣100)÷100=20%,
∴卖120元可赚20%,
故选:A.
2.解:设该商品的进价为x元,
由题意可得:(1+20%)x=96,
解得:x=80,
故选:C.
3.解:设原价为x元,
根据题意,得0.8x=100,
解得x=125.
故选:B.
4.解:设盈利的运动衫的进价为x元,亏损的运动衫的进价为y元,
依题意得:160﹣x=60%x,160﹣y=﹣20%y,
解得:x=100,y=200,
∴(160﹣100)+(160﹣200)=60﹣40=20(元),
∴在这次买卖中这家商店盈利20元.
故选:B.
5.解:依题意得:3200×90%﹣x=20%x,
即3200×90%=(1+20%)x.
故选:B.
6.解:设这种服装的原价为x元,
根据题意得,,
故选:D.
7.解:设该商品的标价为x元,
0.9x=120×(1+20%),
解得:x=160,
答:该商品的标价为160元,
故选:C.
8.解:依题意得:80×0.8﹣x=10.
故选:A.
9.解:设商品原来的售价为x元,优惠后的售价为0.8x元,由题意,得
x﹣0.8x=15,
解得:x=75,
∴顾客付款为:75﹣15=60(元).
故选:B.
10.解:设这种商品每件的标价是x元,依题意有
x×90%=250×(1+15.2%),
解得x=320.
故这种商品每件的标价是320元.
故选:D.
11.解:设这款羽绒服每件进价为x元,则标价为(1+50%)x元,
依题意得:(1+50%)x×80%=x+50.
故选:B.
12.解:(1)设乙种商品每件进价为x元,则甲种商品每件进价为(x﹣20)元,
由题意可得,7(x﹣20)+2x=760,
解得x=100,
∴x﹣20=80,
答:甲、乙两种商品的每件进价分别是80元,100元;
(2)设购进甲种商品a件,乙种商品(50﹣a)件,每件乙商品的售价为b元,
由题意可得,80a+100(50﹣a)=4400,
解得a=30,
则(100﹣80)×30+(b﹣100)×(50﹣30)=4400×20%,
解得b=114,
答:每件乙商品的售价为114元.
13.解:设这种商品的定价是x元,
由题意得:0.65x+30=0.8x﹣15,
解得x=300,
答:这种商品的定价是300元.
14.解:设“5.17世界电信日”当天商家对该款手机打x折销售,
由题意可得:(1+20%)×=1﹣16%,
解得:x=7,
答:“5.17世界电信日”当天商家对该款手机打七折销售.
15.解:(1)∵商城推出了“每满300减40”的活动,
∴当300≤x<600时,减免40元;当600≤x<900时,减免40×2=80(元).
故答案为:300≤x<600;80.
(2)设微波炉的进价为m元,则商家卖一个微波炉赚(640﹣m)元,
依题意得:0.8×(1+50%)m﹣80=640,
解得:m=600,
∴640﹣m=640﹣600=40.
答:商家卖一个微波炉赚40元.
16.解:(1)设购进甲种儿童玩具水枪x支,则购进乙种儿童玩具水枪(100﹣x)支,
依题意得:10x+20(100﹣x)=1200,
解得:x=80,
∴100﹣x=100﹣80=20.
答:购进甲种儿童玩具水枪80支,乙种儿童玩具水枪20支.
(2)(20﹣10)×80+(35﹣20)×20
=10×80+15×20
=800+300
=1100(元).
答:全部售完这100支儿童玩具水枪,该商场获利润1100元.
17.解:(1)B商品标价是225元,出售价格按标价降低a%,
那么降价后的标价是225(1﹣a%)元,
故答案为:225(1﹣a%);
(2)设A商品进价为m元,则m(1+50%)=150.
解得m=100.
设B商品的进价为n元,则n(1+50%)=225.
解得n=150.
由题意得:[150×(1﹣10%)﹣100]×20+[225(1﹣a%)﹣150]×10=1000.
解得:a=20,
∴a的值是20.
18.解:设甲服装的成本为x元,则乙服装的成本为(500﹣x)元,
根据题意得:90% (1+50%)x+90% (1+40%)(500﹣x)﹣500=157,
解得:x=300,500﹣x=200.
答:甲服装的成本为300元、乙服装的成本为200元.
19.解:(1)设初一(1)班有x人,
则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,
解得:x=48或x=76(不合题意,舍去).
即初一(1)班48人,初一(2)班56人;
(2)1240﹣104×9=304,
∴可省304元钱;
(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,
51×11=561,48×13=624>561
∴48人买51人的票可以更省钱.
20.解:(1)∵数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10,
∴得B点表示的数为﹣4,
当点P运动到AB的中点时,它所表示的数为1.
故答案为﹣4、1.
(2)①根据题意,得
6t﹣2t=10
解得t=2.5
答:当P运动2.5秒时,点P追上点Q.
②根据题意,得
当点P与点Q相遇前,距离8个单位长度:
2t+(10﹣6t)=8,
解得t=0.5;
当点P与点Q相遇后,距离8个单位长度:
(6t﹣10)﹣2t=8,
解得t=4.5.
答:当点P运动0.5秒或4.5秒时,点P与点Q间的距离为8个单位长度.