2021-2022学年苏科版七年级数学上册《4.3用一元一次方程解决问题》
同步练习题(附答案)
1.《算学启蒙》中有一道题,原文是:良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之?译文为:跑的快的马每天走240里,跑的慢的马每天走120里.慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,可列方程( )
A.240(x+12)=120x B.240(x﹣12)=120x
C.240x=120(x+12) D.240x=120(x﹣12)
2.将一些课外书分给某班学生阅读,若每人分3本,则剩余20本,若每人分4本,则还差25本,设这个班共有x名学生,则可列方程( )
A.3x+20=4x+25 B.3x+20=4x﹣25
C.3x﹣20=4x+25 D.20+3x=25﹣4x
3.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为( )
A. B.
C. D.
4.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程( )
A.54﹣x=20%×108 B.54﹣x=20%(108+x)
C.54+x=20%×162 D.108﹣x=20%(54+x)
5.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
6.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x天完成,则符合题意的方程是( )
A.=1 B.=1
C.=1 D.=1
7.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )
A. B.
C. D.
8.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是( )
A.5x+4(x+2)=44 B.5x+4(x﹣2)=44
C.9(x+2)=44 D.9(x+2)﹣4×2=44
9.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6 1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )
A.1.2×0.8x+2×0.9(60+x)=87
B.1.2×0.8x+2×0.9(60﹣x)=87
C.2×0.9x+1.2×0.8(60+x)=87
D.2×0.9x+1.2×0.8(60﹣x)=87
10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是( )
A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28
C.(1+50%x)×80%=x﹣28 D.(1+50%x)×80%=x+28
11.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得( )
A.+3(100﹣x)=100 B.﹣3(100﹣x)=100
C.3x﹣=100 D.3x+=100
12.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x天完成这项工程,则可列的方程是( )
A. B.
C. D.
13.我国古代问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?若假设井深为x尺,则下列符合题意的方程是( )
A. B.3(x+4)=4(x+1)
C. D.3x+4=4x+1
14.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x元,则根据题意列出方程正确的是( )
A.0.8×(1+40%)x=15 B.0.8×(1+40%)x﹣x=15
C.0.8×40%x=15 D.0.8×40%x﹣x=15
15.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费x元,超过5方,超过部分每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于x的方程,正确的是( )
A.5x+6(x﹣2)=56 B.5x+6(x+2)=56
C.11(x+2)=56 D.11(x+2)﹣6×2=56
16.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为 .
17.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x小时,完成了任务.根据题意,可列方程为 .
18.某市在端午节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出一元一次方程为 .
19.淘宝“双十一”大促,某店铺一件标价为480元的大衣打八折出售,仍可盈利20%,若设这件大衣的成本是x元,根据题意,可得到的方程是 .
20.一件商品如果按原价的八折销售,仍可获得15%的利润.已知该商品的成本价是50元,设该商品原价为x元,那么根据题意可列方程 .
21.在某足球比赛的前9场比赛中,A队保持连续不败,共积25分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为 .
22.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为 .
23.一艘轮船航行在A、B两码头之间,顺水航行用了3小时,逆水航行比顺水航行多用30分钟,轮船在静水中的速度是26千米/时,则水流速度为 千米/时.
24.某公园的门票是10元/人,团体购票有如下优惠:
购票人数 1﹣30人 31﹣60人 60人以上
票价 无折扣 超出30人的部分,票价打八折 超出60人的部分,票价打五折
某校七年级两个班到该公园秋游,其中甲班多于30人,乙班不足30人,如果以班为单位分别购票,两个班一共应付598元.如果两个班作为一个团体购票,一共应付545元,则甲班有 人,乙班有 人.
25.某商品连续两次涨价20%后的价格为1440元,则这种商品原价为 元.
参考答案
1.解:设快马x天可以追上慢马,则慢马跑了(x+12)天,
依题意,得:240x=120(x+12).
故选:C.
2.解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,
故选:B.
3.解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,
所以根据时间列的方程为:=3,
故选:C.
4.解:设把x公顷旱地改为林地,根据题意可得方程:54﹣x=20%(108+x).
故选:B.
5.解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得
1000(26﹣x)=2×800x,故C答案正确,
故选:C.
6.解:设甲、乙共用x天完成,则甲单独干了(x﹣22)天,本题中把总的工作量看成整体1,则甲每天完成全部工作的,乙每天完成全部工作的.
根据等量关系列方程得:=1,
故选:A.
7.解:设A港和B港相距x千米,可得方程:
.
故选:A.
8.解:由题意可得,
5x+(9﹣5)(x+2)=5x+4(x+2)=44,
故选:A.
9.解:设铅笔卖出x支,由题意,得
1.2×0.8x+2×0.9(60﹣x)=87.
故选:B.
10.解:标价为:x(1+50%),
八折出售的价格为:(1+50%)x×80%;
∴可列方程为:(1+50%)x×80%=x+28,
故选:B.
11.解:设大和尚有x人,则小和尚有(100﹣x)人,
根据题意得:3x+=100.
故选:D.
12.解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:
.
故选:D.
13.解:设井深为x尺,
依题意,得:3(x+4)=4(x+1).
故选:B.
14.解:设这种服装每件的成本价是x元,由题意得:
0.8×(1+40%)x﹣x=15
故选:B.
15.解:依题意,得:5x+(11﹣5)×(x+2)=56,
即5x+6(x+2)=56.
故选:B.
16.解:设有x个人共同买鸡,根据题意得:
9x﹣11=6x+16.
故答案为:9x﹣11=6x+16.
17.解:根据题意得:初二学生的效率为,初三学生的效率为,
则初二和初三学生一起工作的效率为(),
∴列方程为:()x=1.
故答案为:(+)x=1.
18.解:设每条船上划桨的有x人,则每条船上有x+2人,根据等量关系列方程得:15(x+2)=330.
19.解:设这件大衣的成本是x元,由题意得:
480×0.8=x×(1+20%),
故答案为:480×0.8=x×(1+20%).
20.解:由题意可得,
0.8x﹣50=50×15%,
故答案为:0.8x﹣50=50×15%.
21.解:设A队胜了x场,由题意可列方程为:
3x+(9﹣x)=25.
故答案为:3x+(9﹣x)=25.
22.解:由题意可得,
x+2x+4x+8x+16x+32x=378,
故答案为:x+2x+4x+8x+16x+32x=378.
23.解:设水流速度是x千米/时,则船在顺水中的速度为(26+x)千米/时,船在逆水中的速度为(26﹣x)千米/时,
由题意得,(26+x)×3=(26﹣x)×(3+),
解得:x=2,
则水流速度是2千米/时.
故答案为:2.
24.解:设甲班有x人,乙班有y人,
根据题意可得,
解得:,
即甲班有36人,乙班有25人,
故答案为:36,25.
25.解:设这种商品的原价为x元,由题意得:
(1+20%)(1+20%)x=1440,
解得:x=1000.
故这种商品原价为1000元.
故答案为:1000.