华师大版第二十七章二次函数

文档属性

名称 华师大版第二十七章二次函数
格式 zip
文件大小 534.0KB
资源类型 教案
版本资源 华师大版
科目 数学
更新时间 2012-10-12 20:49:50

图片预览

文档简介

第二十七章 二次函数
§27.1 二次函数所描述的关系
学习目标:
1.探索并归纳二次函数的定义.
2.能够表示简单变量之间的二次函数关系.
学习重点:
1.经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验.
2.能够表示简单变量之间的二次函数.
学习难点:
经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验.
学习方法:
讨论探索法、归纳总结法。
学习过程:
(一)情境导入
(1)正方形边长为a(cm),它的面积s(cm2)是多少?
(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式.
回忆:什么是函数关系?我们已经学习过的函数关系有哪几种?
请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义.
(二)实践与探索
【例1】 ① 函数y=(m+2)x+2x-1是二次函数,则m= 。
② m满足 时,函数是以x为自变量的二次函数。
【例2】 下列函数中是二次函数的有 。
①y=x+; ②y=3(x-1)2+2; ③y=(x+3)2-2x2; ④y=+x; ⑤,
⑥; ⑦; ⑧
【例3】正方形的边长是5,若边长增加x,面积增加y,求y与x之间的函数表达式. (1)
【练习】
已知正方形的周长为20,若其边长增加x,面积增加y,求y与x之间的表达式.
已知正方形的周长是x,面积为y,求y与x之间的函数表达式.
3、已知正方形的边长为x,若边长增加5,求面积y与x的函数表达式.
4、菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.
【例4】某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x,请你得出每天销售利润y与售价的函数表达式.
【例5】如图2-1-1,正方形ABCD的边长为4,P是BC边上一点,QP⊥AP交DC于Q,如果BP=x,△ADQ的面积为y,用含x的代数式表示y.
思考题:如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:
(1)在第n个图中,第一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n的代数式表示);
(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数表达式(不要求写出自变量n的取值范围);
(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;
(4)若黑瓷砖每块4元,白瓷砖每块3元,在问题(3)中,共需花多少元购买瓷砖?
(5)是否存在黑瓷砖与白瓷砖相等的情形?请通过计算说明为什么?
(2)
课后练习:
1.已知函数y=ax2+bx+c(其中a,b,c是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数.
2.当m满足 时,y=(m-2)是二次函数.
3.已知菱形的一条对角线长为a,另一条对角线为它的倍,用表达式表示出菱形的面积S与对角线a的关系.
4.已知:一等腰直角三角形的面积为S,请写出S与其斜边长a的关系表达式,并分别求出a=1,a=,a=2时三角形的面积.
5.下列不是二次函数的是( )
A.y=3x2+4 B.y=-x2 C.y= D.y=(x+1)(x-2)
6.函数y=(m-n)x2+mx+n是二次函数的条件是( )
A.m、n为常数,且m≠0 B.m、n为常数,且m≠n
C.m、n为常数,且n≠0 D.m、n可以为任何常数
7.半径为3的圆,如果半径增加2x,则面积S与x之间的函数表达式为( )
A.S=π(x+3)2 B.S=9π+x C.S=4πx2+12x+9 D.S=4πx2+12πx+9π
8.下列函数关系中,可以看作二次函数y=ax2+bx+c(a≠0)模型的是( )
A.在一定的距离内汽车的行驶速度与行驶时间的关系
B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系
C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)
D.圆的周长与圆的半径之间的关系.
9.下列函数中,二次函数是( )
A.y=6x2+1 B.y=6x+1 C.y=+1 D.y=+1
10.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y与高x的表达式;(2)求x的取值范围.
11.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件.现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件.若他将售出价定为x元,每天所赚利润为y元,请你写出y与x之间的函数表达式?
(3)
12.⑴已知:如图菱形ABCD中,∠A=60°,边长为a,
求其面积S与边长a的函数表达式.
⑵菱形ABCD,若两对角线长a:b=1:,请你用含a的代数式表示其面积S.
⑶菱形ABCD,∠A=60°,对角线BD=a,求其面积S与a的函数表达式.
13.如图,在矩形ABCD中,AB=6cm,BC=12cm.点P从点A开始沿AB方向向点B以1cm/s的速度移动,同时,点Q从点B开始沿BC边向C以2cm/s的速度移动.如果P、Q两点分别到达B、C两点停止移动,设运动开始后第t秒钟时,五边形APQCD的面积为Scm2,写出S与t的函数表达式,并指出自变量t的取值范围.
14.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8.点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF.设DE=x,DF=y.
(1)AE用含y的代数式表示为:AE= ;
(2)求y与x之间的函数表达式,并求出x的取值范围;
(3)设四边形DECF的面积为S,求S与x之间的函数表达式.
(4)
§27.2 二次函数的图象与性质(1)
学习目标:
经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究二次函数性质的经验.掌握利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.能够作出二次函数y=-x2的图象,并比较它与y=x2图象的异同,初步建立二次函数表达式与图象之间的联系.
学习重点:
利用描点法作出y=x2的图象过程中,理解掌握二次函数y=x2的性质,这是掌握二次函数y=ax2+bx+c(a≠0)的基础,是二次函数图象、表达式及性质认识应用的开始,只有很好的掌握,才会把二次函数学好.只要注意图象的特点,掌握本质,就可以学好本节.
学习难点:
函数图象的画法,及由图象概括出二次函数y=x2性质,它难在由图象概括性质,结合图象记忆性质.
学习方法:
探索——总结——运用法. 类比联想,形数结合。
学习过程:
(一)情境导入
我们已经知道,一次函数,反比例函数的图象分别是 、 ,那么二次函数的图象是什么呢?
用描点法画二次函数的图象。
思考:描点法画函数的图象前,想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?
… …
… …
解 列表
(2)观察函数的图象,你能得出什么结论?
二、议一议:
1.你能描述图象的形状吗?
2.图象与x轴有交点吗?如果有,交点的坐标是什么?
3.当x<0时,y随着x的增大,y的值如何变化?当x>0时呢?
4.当x取什么值时,y的值最小?
5.图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点?
三、y=x的图象的性质:
(5)
观察右图(在同一坐标系下二次函数与的图象)思考问题:
对于二次函数
a 的作用是:①


2、图象是 ;对称轴是 ;顶点坐标为 。
3、 当a〉0时,抛物线开口方向 ,抛物线有最 点,函数
有最 值(即当= 时,= );
当a<0时抛物线开口方向 ,抛物线有最 点,函数
有最 值(即当= 时,= )。
4、当a>0且时,随的增大而 ,减小而 ( )
当a>0且>0时,随的增大而 ,减小而 ( )
当a<0且<0时,随的增大而 ,减小而 ( )
当且>0时,随的增大而 ,减小而 ( )
在自变量的全体取值范围内,与是否有明确的变化规律?
在什么情况之下,才可以谈与的变化规律?
例题分析:
一、已知是二次函数,且当时,y随x的增大而增大.
(1)求k的值;
(2)求顶点坐标和对称轴.
二、已知正方形周长为Ccm,面积为S cm2.
(1)求S和C之间的函数关系式,并画出图象;
(2)根据图象,求出S=1 cm2时,正方形的周长;
(3)根据图象,求出C取何值时,S≥4 cm2.
(6)
四、练习
1.函数y=x2的顶点坐标为 ,若点(a,4)在其图象上,则a的值是 。
2.若点A(3,m)是抛物线y=-x2上一点,则m= 。
3.函数y=x2与y=-x2的图象关于 对称,也可以认为y=-x2,是函数y=x2的
图象绕 旋转 度得到。
五、课后练习
1.若二次函数y=ax2(a≠0),图象过点P(2,-8),则函数表达式为 。
2.函数y=x2的图象的对称轴为 ,与对称轴的交点为 ,即函数的顶点。
3.点A(,b)是抛物线y=x2上的一点,则b= ;点A关于y轴的对称点B是 ,它在函数 上;点A关于原点的对称点C是 ,它在函数 上。
4.直线y=x与抛物线y=x2的交点坐标为 。
5.若a>1,点(-a-1,y1)、(a,y2)、(a+1,y3)都在函数y=x2的图象上,则y1、y2、y3的大小关系为 。
6.如图,A、B分别为y=x2上两点,
且线段AB⊥y轴,若AB=6,
则△ABC的面积为
7、底面是边长为x的正方形,高为0.5cm的长方体的体积为ycm3.
(1)求y与x之间的函数关系式;
(2)画出函数的图象;
(3)根据图象,求出y=8 cm3时底面边长x的值;
(4)根据图象,求出x取何值时,y≥4.5 cm3.
(7)
§27.2 二次函数的图象与性质(2)
学习目标:
1.经历探索二次函数y=ax2和y=ax2+c的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.
2.会作出y=ax2和y=ax2+c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响.
3.能说出y=ax2+c与y=ax2图象的开口方向、对称轴和顶点坐标.
4.体会二次函数是某些实际问题的数学模型.
学习重点:
二次函数y=ax2、y=ax2+c的图象和性质,因为它们的图象和性质是研究二次函数y=ax2+bx+c的图象和性质的基础.我们在学习时结合图象分别从开口方向、对称轴、顶点坐标、最大(小值)、函数的增减性几个方面记忆分析.
学习难点:
由函数图象概括出y=ax2、y=ax2+c的性质.函数图象都由(1)列表,(2)描点、连线三步完成.我们可根据函数图象来联想函数性质,由性质来分析函数图象的形状和位置.
学习方法:
类比学习法。
学习过程:
一、复习:
二次函数y=x2 与y=-x2的性质:
抛物线 y=x2 y=-x2
对称轴
顶点坐标
开口方向
位置
增减性
最值
二、问题引入:
同学们还记得一次函数与的图象的关系吗?
你能由此推测二次函数与的图象之间的关系吗?
那么与的图象之间又有何关系? .
三、动手操作、探究:
1.在同一平面内画出函数y=2x2与y=2x2+1的图象。
2.在同一平面内画出函数y=3x2与y=3x2-1的图象。
比较它们的性质,你可以得到什么结论?
(8)
四、观察分析总结:
1.在同一直角坐标系中,函数与的图象.
x … -3 -2 -1 0 1 2 3 …
… 18 8 2 0 2 8 18 …
… 20 10 4 2 4 10 20 …
解 列表.
描点、连线,画出这两个函数的图象,如图所示.
回顾与反思 :当自变量x取同一数值时,这两个函数
的函数值之间有什么关系?反映在图象上,
相应的两个点之间的位置又有什么关系?
探索 : 观察这两个函数,它们的开口方向、对称轴
和顶点坐标有那些是相同的?又有哪些不同?
你能由此说出函数与的
图象之间的关系吗?
2.在同一直角坐标系中,已画出函数与的图象,
x … -3 -2 -1 0 1 2 3 …
… -8 -3 0 1 0 -3 -8 …
… -10 -5 -2 -1 -2 -5 -10 …
解 : 列表.
描点、连线,画出这两个函数的图象,如图所示.
可以看出,抛物线
是由抛物线向 平移 个单位得到的.
回顾与反思 : 抛物线和抛物线
分别是由抛物线怎样平移得到的?
探索 :如果要得到抛物线,应将抛物线作怎样的平移?
(9)
归纳总结: (a、k是常数,a≠0)的图象的开口方向、
对称轴、顶点坐标归纳如下:
开口方向 对称轴 顶点坐标
五、例题分析:
已知抛物线y=(m+1)x开口向下,求m的值.
【例2】k为何值时,y=(k+2)x是关于x的二次函数?
【例3】已知:一条抛物线的开口方向、对称轴与相同,顶点纵坐标是-2,且抛物线经过点(1,1),求:这条抛物线的函数关系式.
【例4】已知直线y=-2x+3与抛物线y=ax2相交于A、B两点,且A点坐标为(-3,m).
(1)求a、m的值;
(2)求抛物线的表达式及其对称轴和顶点坐标;
(3)x取何值时,二次函数y=ax2中的y随x的增大而减小;
(4)求A、B两点及二次函数y=ax2的顶点构成的三角形的面积.
(10)
【例5】有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.
(1)在如图所示的直角坐标系中,求出该抛物线的表达式;
(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为k的函数表达式;
(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.
六、课后练习
1.抛物线y=-4x2-4的开口向 ,当x= 时,y有最 值,y= .
2.当m= 时,y=(m-1)x-3m是关于x的二次函数.
3.抛物线y=-3x2上两点A(x,-27),B(2,y),则x= ,y= .
4.当m= 时,抛物线y=(m+1)x+9开口向下,对称轴是 .在对称轴左侧,y随x的增大而 ;在对称轴右侧,y随x的增大而 .
5.抛物线y=3x2与直线y=kx+3的交点为(2,b),则k= ,b= .
6.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为 .
7.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是( )
A.y=x2 B.y=-x2 C.y=-2x2 D.y=-x2
8.抛物线,y=4x2,y=-2x2的图象,开口最大的是( )
A.y=x2 B.y=4x2 C.y=-2x2 D.无法确定
9.对于抛物线y=x2和y=-x2在同一坐标系里的位置,下列说法错误的是( )
A.两条抛物线关于x轴对称 B.两条抛物线关于原点对称
C.两条抛物线关于y轴对称 D.两条抛物线的交点为原点
10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的图象大致为( )
(11)
11.已知函数y=ax2的图象与直线y=-x+4在第一象限内的交点和它与直线y=x在第一象限内的交点相同,则a的值为( )
A.4 B.2 C. D.
12.写出下列条件的抛物线y=ax2的表达式:
(1)y=ax2经过(1,2);
(2)y=ax2与y=x2的开口大小相等,开口方向相反;
(3)y=ax2与直线y=x+3交于点(2,m).
13.如图,直线ι经过A(3,0),B(0,3)两点,且与二次函数y=x2+1的图象,在第一象限内相交于点C.求:
(1)△AOC的面积;
(2)二次函数图象顶点与点A、B组成的三角形的面积.
14.自由落体运动是由于地球引力的作用造成的,在地球上,物体自由下落的时间t(s)和下落的距离h(m)的关系是h=4.9t 2.求:
(1)一高空下落的物体下落时间3s时下落的距离;
(2)计算物体下落10m,所需的时间.(精确到0.1s)
15.有一座抛物线型拱桥,桥下面在正常水位AB时宽20m.水位上升3m,就达到警戒线CD,这时,水面宽度为10m.
(1)在如图2-3-9所示的坐标系中求抛物线的表达式;
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
(12)
§27.2 二次函数的图象与性质(3)
学习目标:
  1.会用描点法画出二次函数 与 的图象;
  2.能结合图象确定抛物线 与 的对称轴与顶点坐标;
3.通过比较抛物线 与 同 的相互关系,
培养观察、分析、总结的能力;
学习重点:
画出形如 与形如 的二次函数的图象,能指出上述函数图象的开口方向,对称轴,顶点坐标.
学习难点:
理解函数 、 与 及其图象间的相互关系
学习方法:
探索研究法。
学习过程:
一、回顾思考:1.什么是二次函数?
   2.我们已研究过了什么样的二次函数?
   3.形如 和的二次函数的开口方向,对称轴,顶点坐标各是什么?
二、形数结合思考:
在同一平面直角坐标系画出函数 、 、 的画示意图象,由图象思考下列问题:
  (1)抛物线 的开口方向,对称轴与顶点坐标是什么?
  (2)抛物线 的开口方向,对称轴与顶点坐标是什么?
  (3)抛物线 , 与 的开口方向,对称轴,顶点坐标有何异同?
(4)抛物线 与 同有什么关系?
三、结合学习谈体会:
  ①抛物线的形状相同具体是指什么?
  ②根据你所学过的知识能否回答:为何这三条抛物线的开口方向和开口大小都相同?
  ③这三条抛物线的位置有何不同?它们之间可有什么关系?
  ④抛物线 是由抛物线 沿y轴怎样移动了几个单位得到的?抛物线 呢?
⑤你认为是什么决定了会这样平移?
(13)
四、实践操作:在同一平面直角坐标系内画出 与 的图象.并指出每个二次函数的开口方向,对称轴,顶点坐标。
五、在同一直角坐标系中,画出下列函数的图象.
, ,,并指出它们的开口方向、对称轴和顶点坐标.
x … -3 -2 -1 0 1 2 3 …
… 2 0 2 …
… 0 2 8 …
… 8 2 0 …
解 列表.
描点、连线,画出这三个函数的图象,如图所示.
观察填空: 它们的开口方向 ;
对称轴分别是 、 和
顶点坐标分别是 、 , 。
对于抛物线,当x 时,函数值y随x的增大而减小;
当x 时,函数值y随x的增大而增大;
当x 时,函数取得最 值,最 值y= . (14)
探索 : 抛物线和抛物线分别是由抛物线向 平移 个单位得到的.如果要得到抛物线,应将抛物线作怎样的平移?
2.不画出图象,你能说明抛物线与之间的关系吗
解 :
回顾与反思 (a、h是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:
开口方向 对称轴 顶点坐标
本节课学习了二次函数 与 的图象的画法,主要内容如下表所示:
(理解记忆)  
  表一:
抛物线 开口方向 对称轴 顶点坐标




表二:
抛物线 开口方向 对称轴 顶点坐标




(15)
[当堂课内练习]
1、填空:抛物线的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由
抛物线向 平移 个单位得到的.
2.已知抛物线, ,,指出它们的开口方向、对称轴和顶点坐标.
[本课课外作业]
1.已知函数,, .
(1)在同一直角坐标系中画出它们的图象;
(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标;
(3)分别讨论各个函数的性质.
2.根据上题的结果,
试说明:分别通过怎样的平移,可以由抛物线得到抛物线和?
3.函数,当x 时,函数值y随x的增大而减小.当x 时,函数取得最 值,最 值y= .
4.不画出图象,请你说明抛物线与之间的关系.
5.将抛物线向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点(1,3),求的值.
(16)
§27.2 二次函数的图象与性质(4)
学习目标:
  1.会用描点法画出二次函数 的图像;
  2.知道抛物线 的对称轴与顶点坐标;
学习重点:
会画形如 的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。
学习难点:
确定形如 的二次函数的顶点坐标和对称轴。
学习方法:
探索研究法。
学习过程:
1、请你在同一直角坐标系内,画出函数 的图像,并指出它们的开口方向,对称轴及顶点坐标.
2、你能否在这个直角坐标系中,再画出函数 的图像?
你能否指出抛物线 的开口方向,对称轴,顶点坐标?
将在上面练习中三条抛物线的性质填入所列的有中,如下表:
抛物线 开口方向 对称轴 顶点坐标
4、我们已知抛物线的开口方向是由二次函数 中的a的值决定的,你能通过上表中的特征,试着总结出抛物线的对称轴和顶点坐标是由什么决定的吗?
(17)
5、抛物线 有什么关系?
6、它们的位置有什么关系?
①抛物线 是由抛物线 怎样移动得到的?
②抛物线 是由抛物线 怎样移动得到的?
③抛物线 是由抛物线 怎样移动得到的?
④抛物线 是由抛物线 怎样移动得到的?
⑤抛物线 是由抛物线 怎样移动得到的?
类比学习:在同一直角坐标系中,画出下列函数的图象.
,,,并指出它们的开口方向、对称轴和顶点坐标.
x … -3 -2 -1 0 1 2 3 …
… 2 0 2 …
… 8 2 0 2 …
… 6 0 -2 0 …
解 列表.
描点、连线,画出这三个函数的图象,如图所示.
它们的开口方向都向 ,
对称轴分别为 、 、 ,
顶点坐标分别为 、 、 .
回顾与反思 二次函数的图象的上下平移,只影响二次函数+k中 的值;左右平移,只影响 的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关. (18)
探索 你能说出函数+k(a、h、k是常数,a≠0)的图象的开口方向、对称轴和顶点坐标吗?试填写下表.
+k 开口方向 对称轴 顶点坐标
总结、扩展
一般的二次函数,都可以变形成 的形式,其中:
  1、a能决定什么?怎样决定的?
2、它的对称轴是什么?顶点坐标是什么?
3、如何由二次函数得到形成的函数?
[当堂课内练习]
1.将抛物线如何平移可得到抛物线 ( )
A.向左平移4个单位,再向上平移1个单位 B.向左平移4个单位,再向下平移1个单位
C.向右平移4个单位,再向上平移1个单位 D.向右平移4个单位,再向下平移1个单位
2.把抛物线向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 。
3.抛物线可由向 平移 个单位,再向 平移 个单位得到。
[本课课外作业]
1.分别指出下列函数的图象,,的开口方向、对称轴和顶点坐标.
2.将抛物线先向下平移1个单位,再向左平移4个单位,求平移后的抛物线的函数关系式.
3.将抛物线如何平移,可得到抛物线?
(19)
§27.2-5 二次函数的图象与性质(5)
[本课知识要点]
1.能通过配方把二次函数化成+k的形式,从而确定开口方向、对称轴和顶点坐标;
2.会利用对称性画出二次函数的图象.
[回顾思考]
我们已经发现,二次函数的图象,可以由函数的图象先向 平移 个单位,再向 平移 个单位得到,因此,可以直接得出:函数的开口 ,对称轴是 ,顶点坐标是 .那么,对于任意一个二次函数,如,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗?
[实践与探索]
例1.通过配方,确定抛物线的开口方向、对称轴和顶点坐标,再描点画图.
解 :
因此,抛物线开口 ,
对称轴是 ,
顶点坐标为
由对称性列表:
x … …
… …
描点、连线,如右图所示:
回顾与反思 (1)列表时选值,应以对称轴 为中心,函数值可由 得到。
(2)描点画图时,要根据已知抛物线的特点,一般做法是
探索 对于二次函数,你能用配方法求出它的对称轴和顶点坐标吗?
(20)
【对应练习】利用配方法,把下列函数写成+k的形式,并写出它们的图象的开口方向、对称轴和顶点坐标.
(1) (2)
(3) (4)
例2.已知抛物线的顶点在坐标轴上,求的值.
解 :
[当堂课内练习]
1.(1)二次函数的对称轴是 .
(2)二次函数的图象的顶点是 ,当x 时,y随x的增大而减小.
(3)抛物线的顶点横坐标是-2,则= .
(21)
2.抛物线的顶点是,则、c的值是多少?
[本课课外作业]
说出下列抛物线的开口方向、对称轴及顶点坐标。
(1) (2)
(3) (4)
2、已知抛物线,求出它的对称轴和顶点坐标,并画出函数的图象.
3.已知是二次函数,且当时,y随x的增大而增大.
(1)求k的值;(2)求开口方向、顶点坐标和对称轴.
4.当时,求抛物线的顶点所在的象限.
5. 已知抛物线的顶点A在直线上,求抛物线的顶点坐标.
(22)
§27.2-6 二次函数的图象与性质(6)
[本课知识要点]
1.会通过配方求出二次函数的最大或最小值;
2.在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值.
[回顾思考]
在实际生活中,我们常常会碰到一些带有“最”字的问题,如问题:
某商店将每件进价为80元的某种商品按每件100元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?
在这个问题中,设每件商品降价x元,该商品每天的利润为y元,则可得函数关系式为
二次函数 .那么,此问题可归结为:
自变量x为何值时函数y取得最大值?你能解决吗
[实践与探索]
例1.求下列函数的最大值或最小值.
(1); (2).
分析 由于函数和的自变量x的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值.
解 :(1) (2)
归纳总结: 最大值或最小值的求法,第一步确定a的符号,a>0有最 值,a<0有最 值;
第二步配方求顶点,顶点的 即为对应的最大值或最小值.
探索 试一试,当2.5≤x≤3.5时,求二次函数的最大值或最小值.
【对应练习】1.对于二次函数,当x= 时,y有最小值.
2.已知二次函数有最小值 –1,则a与b之间的大小关系是 ( )
A.a<b B.a=b C.a>b D.不能确定
例2.某产品每件成本是120元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间关系如下表:
x(元) 130 150 165
y(件) 70 50 35
若日销售量y是销售价x的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少? (23)
分析 日销售利润=日销售量×每件产品的利润,因此主要是正确表示出这两个量.
解 :
归纳总结: 解决实际问题时,应先分析问题中的 关系,列出 关系式,再研究所得的函数,得出结果.
【对应练习】3.某商场销售一批衬衫,平均每天可售出20件,每件盈利40件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经过市场调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天盈利最多?
例3.如图26.2.8,在Rt⊿ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)用含y的代数式表示AE;
(2)求y与x之间的函数关系式,并求出x的取值范围;
(3)设四边形DECF的面积为S,求S与x之间的函数关系,并求出S的最大值.
解 :
[本课课外作业]
1.求下列函数式中自变量为何值时,对应得函数的最大值或最小值.
(1); (2).
2.已知二次函数的最小值为1,求m的值.
(24)
3.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:.y值越大,表示接受能力越强.
(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?
(2)第10分时,学生的接受能力是多少?
(3)第几分时,学生的接受能力最强?
4.不论自变量x取什么数,二次函数的函数值总是正值,求m的取值范围.
5.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m2.
(1)求S与x的函数关系式;
(2)如果要围成面积为45 m2的花圃,AB的长是多少米?
(3)能围成面积比45 m2更大的花圃吗?如果能,请求出
最大面积,并说明围法;如果不能,请说明理由.
6.如图,矩形ABCD中,AB=3,BC=4,线段EF在对角线AC上,EG⊥AD,FH⊥BC,垂足分别是G、H,且EG+FH=EF.
(1)求线段EF的长;
(2)设EG=x,⊿AGE与⊿CFH的面积和为S,
写出S关于x的函数关系式及自变量x的取值范围,
并求出S的最小值.
(25)
§27.2-7 二次函数的图象与性质(7)
[本课知识要点]
会根据不同的条件,利用待定系数法求二次函数的函数关系式.
[回顾思考]
一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数的关系式时,通常需要两个独立的条件:确定反比例函数的关系式时,通常只需要一个条件:如果要确定二次函数的关系式,又需要几个条件呢?
[实践与探索]
例1.某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?
分析 如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是.此时只需抛物线上的一个点就能求出抛物线的函数关系式.

例2.根据下列条件,分别求出对应的二次函数的关系式.
(1)已知二次函数的图象经过点A(0,-1)、B(1,0)、C(-1,2);
(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);
(3)已知抛物线与x轴交于点M(-3,0)、(5,0),且与y轴交于点(0,-3);
(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4.
分析 (1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值.

(26)
回顾与反思 确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:
(1)一般式:,给出三点坐标可利用此式来求.
(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求.
(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求.
[当堂课内练习]
1.根据下列条件,分别求出对应的二次函数的关系式.
(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);
(2)已知抛物线的顶点为(-1,2),且过点(2,1);
(3)已知抛物线与x轴交于点M(-1,0)、(2,0),且经过点(1,2).
2.二次函数图象的对称轴是x= -1,与y轴交点的纵坐标是 –6,且经过点(2,10),求此二次函数的关系式.
[本课课外作业]
1.已知二次函数的图象经过点A(-1,12)、B(2,-3),
(1)求该二次函数的关系式;
(2)用配方法把(1)所得的函数关系式化成的形式,
并求出该抛物线的顶点坐标和对称轴.
(27)
2.已知二次函数的图象与一次函数的图象有两个公共点P(2,m)、Q(n,-8),如果抛物线的对称轴是x= -1,求该二次函数的关系式.
3.某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m,顶部C离地面高度为4.4m.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4m.请判断这辆汽车能否顺利通过大门.
4.已知二次函数,当x=3时,函数取得最大值10,且它的图象在x轴上截得的弦长为4,试求二次函数的关系式.
5.已知二次函数的图象经过(1,0)与(2,5)两点.
(1)求这个二次函数的解析式;
(2)请你换掉题中的部分已知条件,重新设计一个求二次函数解析式的题目,使所求得的二次函数与(1)的相同.
6.抛物线过点(2,4),且其顶点在直线上,求此二次函数的关系式.
(28)
§27.3-1 实践与探索(1)
[本课知识要点]
会结合二次函数的图象分析问题、解决问题,在运用中体会二次函数的实际意义.
[新课导入]
生活中,我们常会遇到与二次函数及其图象有关的问题,比如在2004雅典奥运会的赛场上,很多项目,如跳水、铅球、篮球、足球、排球等都与二次函数及其图象息息相关.你知道二次函数在生活中的其它方面的运用吗?
[实践与探索]
例1.如图26.3.1,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是,问此运动员把铅球推出多远?
解 :
探索 此题根据已知条件求出了运动员把铅球推出的实际距离,如果创设另外一个问题情境:一个运动员推铅球,铅球刚出手时离地面m,铅球落地点距铅球刚出手时相应的地面上的点10m,铅球运行中最高点离地面3m,已知铅球走过的路线是抛物线,求它的函数关系式.你能解决吗?试一试.
例2.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.
(1)若不计其他因素,那么水池的半径至少要多少米,
才能使喷出的水流不致落到池外?
(2)若水流喷出的抛物线形状与(1)相同,水池的半径
为3.5m,要使水流不落到池外,此时水流最大高度应
达多少米?(精确到0.1m)
分析 这是一个运用抛物线的有关知识解决实际问题的应用题,我们可以首先必须将水流抛物线放在直角坐标系中,求出抛物线的函数关系式,再利用抛物线的性质即可解决问题.
解 : (1)以O为原点,OA为y轴建立坐标系.设抛物线顶点为B,水流落水与x轴交点为C(如下图).
由题意得,A( , ),B( , ),
因此,设抛物线为 .
(2)由于喷出的抛物线形状与(1)相同,可设此抛物线为 .
(29)
[当堂课内练习]
1.在排球赛中,一队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?
2.在一场篮球赛中,队员甲跳起投篮,当球出手时离地高2.5米,与球圈中心的水平距离为7米,当球出手水平距离为4米时到达最大高度4米.设篮球运行轨迹为抛物线,球圈距地面3米,问此球是否投中?
[本课课外作业]
1.在一场足球赛中,一球员从球门正前方10米处将球踢起射向球门,当球飞行的水平距离是6米时,球到达最高点,此时球高3米,已知球门高2.44米,问能否射中球门?
2.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.
下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).
根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元;
(3)求第8个月公司所获利润是多少万元?
(30)
3.如图,一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05m.
(1)建立如图所示的直角坐标系,求抛物线的函数关系式;
(2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问:球出手时,他跳离地面的高度是多少?
4.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图a)做成的立柱,为了计算所需不锈钢管立柱的总长度,设计人员利用图b所示的坐标系进行计算.
(1)求该抛物线的函数关系式;
(2)计算所需不锈钢管立柱的总长度.
(31)
5.某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)
在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误.
(1)求这条抛物线的函数关系式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为m,问此次跳水会不会失误?并通过计算说明理由.
(32)
§27.3-2 实践与探索(2)
[本课知识要点]
让学生进一步体验把实际问题转化为有关二次函数知识的过程,感悟数学建模,解决实际问题 。
[思考探求]
二次函数的有关知识在经济生活中的应用更为广阔,我们来看这样一个生活中常见的问题:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x米,面积为S平方米.请你设计一个方案,使获得的设计费最多,并求出这个费用.你能解决它吗?类似的问题,我们都可以通过建立二次函数的数学模型来解决.
[实践与探索]
例1.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。
(1)求y关于x的二次函数关系式,并注明x的取值范围;
(2)将(1)中所求出的二次函数配方成的形式,写出顶点坐标;在直角坐标系画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少?
分析 若销售单价为 元,则每千克降低 元,日均多售出 千克,日均销售量为
千克,每千克获利为 元,从而可列出函数关系式。
解 (1)根据题意,得
(2)
例2。某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:
X(十万元) 0 1 2 …
y 1 1.5 1.8 …
(1)求y与x的函数关系式;
(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费
x(十万元)的函数关系式;
(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的
增大而增大? (33)
解 :
[当堂课内练习]
1.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价 ( )
A、5元 B、10元 C、15元 D、20元
2.某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(万元)时,产品的年销售量将是原销售量的y倍,且,如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是是多少万元?
[本课课外作业]
1.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t(件),与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。
(1)写出商场卖这种服装每天的销售利润y与每件的销售价x之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);
(2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?
2.某旅社有客房120间,当每间房的日租金为50元时,每天都客满,旅社装修后,要提高租金,经市场调查,如果一间客房日租金增加5元,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房日租金提高到多少元时,客房的总收入最大?比装修前客房日租金总收入增加多少元?
(34)
3.某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500kg;销售单价每涨1元,月销售量就减少10kg.针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
4.行驶中的汽车在刹车后由于惯性的作用,还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能﹙车速不超过140千米/时﹚,对这种汽车进行测试,数据如下表:
刹车时车速(千米/时) 0 10 20 30 40 50 60
刹车距离 0 0.3 1.0 2.1 3.6 5.5 7.8
﹙1﹚以车速为x轴,以刹车距离为y轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;
﹙2﹚观察图象,估计函数的类型,并确定一个满足这些数据的函数关系式;
﹙3﹚该型号汽车在国道上发生一次交通事故,现场测得刹车距离为46.5米,请推测刹车时的车速是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?
(35)
§27.3-3 实践与探索(3)
[本课知识要点]
(1)会求出二次函数与坐标轴的交点坐标;
(2)了解二次函数与一元二次方程、一元二次不等式之间的关系.
[思考与探求]
给出三个二次函数:(1);(2);(3).它们的图象分别为:
观察图象与x轴的交点个数,分别是 个、 个、 个。你知道图象与x轴的交点个数与什么有关吗?
另外,能否利用二次函数的图象寻找方程,不等式或的解?
[实践与探索]
例1.右图是二次函数的图象,根据图象回答下列问题:
(1)图象与x轴、y轴的交点坐标分别是什么?
(2)当x取何值时,y=0?这里x的取值与方程有什么关系?
(3)x取什么值时,函数值y大于0?x取什么值时,函数值y小于0?
解 :
(1)
(2)
(3)
回顾与反思 (1)二次函数图象与x轴的交点问题常通过一元二次方程的根的问题来解决;反过来,一元二次方程的根的问题,又常用二次函数的图象来解决.
(2)利用函数的图象能更好地求不等式的解集,先观察图象,找出抛物线与x轴的交点,再根据交点的坐标写出不等式的解集.
(36)
例2. (1)已知抛物线,当k= 时,抛物线与x轴相交于两点.
(2)已知二次函数的图象的最低点在x轴上,则a= .
(3)已知抛物线与x轴交于两点A(
α,0),B(β,0),且,则k的值是 。
分析 (1)抛物线与x轴相交于两点,相当于方程有两个不相等的实数根,即根的判别式⊿>0。
(2)二次函数的图象的最低点在x轴上,也就是说,方程的两个实数根相等,即⊿=0。
(3)已知抛物线与x轴交于两点A(α,0),B(β,0),即α、β是方程的两个根,又由于,以及,利用根与系数的关系即可得到结果。
回顾与反思 二次函数的图象与x轴有无交点的问题,可以转化为一元二次方程有无实数根的问题,这可从计算 入手。
例3.已知二次函数,
(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;
(2)m为何值时,这两个交点都在原点的左侧?
(3)m为何值时,这个二次函数的图象的对称轴是y轴?
分析 (1)要说明不论m取任何实数,二次函数的图象必与x轴有两个交点,只要说明方程有两个不相等的实数根,即⊿>0.
(2)两个交点都在原点的左侧,也就是方程有两个负实数根,因而必须符合条件①⊿>0,②,③.综合以上条件,可解得所求m的值的范围.
(3)二次函数的图象的对称轴是y轴,说明方程有一正一负两个实数根,且两根互为相反数,因而必须符合条件①⊿>0,②.

(37)
[当堂课内练习]
1.已知二次函数的图象如图,
则方程的解是 ,
不等式的解集是 ,
不等式的解集是 .
2.抛物线与y轴的交点坐标为 ,
与x轴的交点坐标为 .
3.已知方程的两根是,-1,
则二次函数与x轴的两个交点间的距离为 .
4.函数的图象与x轴有且只有一个交点,求a的值及交点坐标.
[本课课外作业]
1.已知二次函数,画出此抛物线的图象,根据图象回答下列问题.
(1)方程的解是什么?
(2)x取什么值时,函数值大于0?x取什么值时,函数值小于0?
2.如果二次函数的顶点在x轴上,求c的值.
3.不论自变量x取什么数,二次函数的函数值总是正值,求m的取值范围.
(38)
4.已知二次函数,
求:(1)此函数图象的开口方向、对称轴和顶点坐标,并画出草图;
(2)以此函数图象与x轴、y轴的交点为顶点的三角形面积;
(3)x为何值时,y>0.
5.你能否画出适当的函数图象,求方程的解?
6.函数(m是常数)的图象与x轴的交点有 ( )
A.0个 B.1个 C.2个 D.1个或2个
7.已知二次函数.
(1)说明抛物线与x轴有两个不同交点;
(2)求这两个交点间的距离(关于a的表达式);
(3)a取何值时,两点间的距离最小?
(39)
§27.3-4 实践与探索(4)
[本课知识要点]
掌握一元二次方程及二元二次方程组的图象解法.
[思考与探求]
上节课的作业第5题:画图求方程的解,你是如何解决的呢?我们来看一看两位同学不同的方法.
甲:将方程化为,画出的图象,
观察它与x轴的交点,得出方程的解.
乙:分别画出函数和的图象,观察它们的交点,把交点的横坐标作为方程的解.
你对这两种解法有什么看法?请与你的同伴交流.
[实践与探索]
例1.利用函数的图象,求下列方程的解:
(1) ;
(2).
分析 上面甲乙两位同学的解法都是可行的,但乙的方法要来得简便,因为画抛物线远比画直线困难,所以只要事先画好一条抛物线的图象,再根据待解的方程,画出相应的直线,交点的横坐标即为方程的解.
解 (1)在同一直角坐标系中画出函数和的图象,
如图得到它们的交点(-3,9)、(1,1),
则方程的解为 。
(2)先把方程化为
,然后在同一直角
坐标系中画出函数和
的图象,如图,得到它们的交点(,)、(2,4),
则方程的解为 。
回顾与反思 一般地,求一元二次方程的近似解时,可先将方程化为 ,然后分别画出函数 和 的图象,得出交点,交点的横坐标即为方程的解.
(40)
例2.利用函数的图象,求下列方程组的解:
(1); (2).
分析 (1)可以通过直接画出函数和的图象,得到它们的交点,从而得到方程组的解;(2)也可以同样解决.
解 (1)在同一直角坐标系中画出函数和的图象,如图
得到它们的交点(,)、(1,1),
则方程组的解为
(2)在同一直角坐标系中画出函数和的图象,如图,
得到它们的交点(-2,0)、(3,15),则方程组
的解为
[当堂课内练习]
1.利用函数的图象,求下列方程的解:
(1)(精确到0.1) ;
(2).
2.利用函数的图象,求方程组的解。
(41)
[本课课外作业]
1.利用函数的图象,求下列方程的解:
(1) (2)
2.利用函数的图象,求下列方程组的解:
(1); (2).
3.如图所示,二次函数与的图象交于A(-2,4)、B(8,2).求能使成立的x的取值范围。
(42)
第二十七章小结与复习
一、本章学习回顾
知识结构
2.学习要点
(1)能结合实例说出二次函数的意义。
(2)能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。
(3)掌握二次函数的平移规律。
(4)会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值。
(5)会用待定系数法灵活求出二次函数关系式。
(6)熟悉二次函数与一元二次方程及方程组的关系。
(7)会用二次函数的有关知识解决实际生活中的问题。
3.需要注意的问题
在学习二次函数时,要注重数形结合的思想方法。在二次函数图象的平移变化中,在用待定系数法求二次函数关系式的过程中,在利用二次函数图象求解方程与方程组时,都体现了数形结合的思想。
一、填空题
1.已知函数,当m= 时,它是二次函数;当m= 时,抛物线的开口向上;当m= 时,抛物线上所有点的纵坐标为非正数.
2.抛物线经过点(3,-1),则抛物线的函数关系式为 .
3.抛物线,开口向下,且经过原点,则k= .
4.点A(-2,a)是抛物线上的一点,则a= ; A点关于原点的对称点B是 ;A点关于y轴的对称点C是 ;其中点B、点C在抛物线上的是 .
5.若抛物线的顶点在x轴上,则c的值是 .
6.把函数的图象向左平移2个单位,再向下平移3个单位,所得新图象的函数关系式为 .
7.已知二次函数的最小值为1,那么m的值等于 .
8.二次函数的图象在x轴上截得的两交点之间的距离为 .
9.抛物线的对称轴是 ,根据图象可知,当x 时,y随x的增大而减小.
10.已知抛物线的顶点在原点,对称轴是y轴,且经过点(-2,-2),则抛物线的函数关系式为 .
11.若二次函数的图象经过点(2,0)和点(0,1),则函数关系式为 .(43)
12.抛物线的开口方向向 ,顶点坐标是 ,对称轴是 ,与x轴的交点坐标是 ,与y轴的交点坐标是 ,当x= 时,y有最 值是 .
13.抛物线与x轴的两个交点坐标分别为,,若,那么c值为 ,抛物线的对称轴为 .
14.已知函数.当m 时,函数的图象是直线;当m
时,函数的图象是抛物线;当m 时,函数的图象是开口向上,且经过原点的抛物线.
15.一条抛物线开口向下,并且与x轴的交点一个在点A(1,0)的左边,一个在点A(1,0)的右边,而与y轴的交点在x轴下方,写出这条抛物线的函数关系式 .
二、选择题
16.下列函数中,是二次函数的有 ( )
① ② ③ ④
A、1个 B、2个 C、3个 D、4个
17.若二次函数的图象经过原点,则m的值必为 ( )
A、-1或3 B、-1 C、3 D、无法确定
18.二次函数的图象与x轴 ( )
A、没有交点 B、只有一个交点 C、只有两个交点 D、至少有一个交点
19.二次函数有 ( )
A、最大值1 B、最大值2 C、最小值1 D、最小值2
20.在同一坐标系中,作函数,,的图象,它们的共同特点是( )
A、都是关于x轴对称,抛物线开口向上 B、都是关于y轴对称,抛物线开口向下
C、都是关于原点对称,抛物线的顶点都是原点 D、都是关于y轴对称,抛物线的顶点都是原点
21.已知二次函数的图象和x轴有交点,则k的取值范围是 ( )
A、 B、且 C、 D、且
22.二次函数的图象可由的图象 ( )
A.向左平移1个单位,再向下平移2个单位得到 B.向左平移1个单位,再向上平移2个单位得到
C.向右平移1个单位,再向下平移2个单位得到 D.向右平移1个单位,再向上平移2个单位得到
23.某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去.为了投资少而获利大,每床每晚应提高 ( )
A、4元或6元 B、4元 C、6元 D、8元
24.若抛物线的所有点都在x轴下方,则必有 ( )
A、 B、 C、 D、
25.抛物线的顶点关于原点对称的点的坐标是 ( )
A、(-1,3) B、(-1,-3) C、(1,3) D、(1,-3) (44)
三、解答题
26.已知二次函数.
(1)写出抛物线的开口方向、顶点坐标、对称轴、最大或最小值;
(2)求抛物线与x轴、y轴的交点;
(3)作出函数图象的草图;
(4)观察图象,x为何值时,y>0;x为何值时,y= 0;x为何值时,y<0?
27.已知抛物线过(0,1)、(1,0)、(-1,1)三点,求它的函数关系式.
28.已知二次函数,当x=2时,y有最大值5,且其图象经过点(8,-22),求此二次函数的函数关系式.
29.已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2.
(1)求二次函数的函数关系式;
(2)设此二次函数图象的顶点为P,求⊿ABP的面积.
30.利用函数的图象,求下列方程(组)的解:
(1) (2).
31.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.
(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?
(45)
实际问题
二次函数的图象
二次函数
二次函数的性质
二次函数的应用