《平行线的判定》教案
一、教学目标
1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,培养推理能力和有条理的表达能力。
2.经历探究直线平行的判定方法的过程;掌握直线平行的判定方法,领悟归纳和转化的数学思想。
二、教学重难点
教学重点:探索并掌握直线平行的判定方法。
教学难点:直线平行的判定方法的应用。
三、教学方法
利用问题情境,让学生在解决问题的过程中复习已有知识,同时这学习新的知识做好准备,在教学中引导学生通过自主探索、合作交流等方式获得新知识、新方法。在解决问题的过程中多方面尝试,丰富学生的解题策略,教师的适时点拨,精炼概括,使学生的思维逐渐清晰条理,帮助学生积累经验、训练技能。
四、教学过程
(一)复习旧知,引入新课回顾用一副三角尺画平行线的方法
要求:过已知直线a外一点p画a的平行线b
(叙述作图过程)
步骤:①_________________________________
②___________________________________
③___________________________________
④___________________________________
展示课件:平行线的画法。
(二)探索新知
1. 平行线的判定方法1
问题1:如右图,在用直尺和三角板画平行线的过程中,三角板起着什么样的作用
结论结果:三角板的作用是使∠PHF和∠BGF相等。
问题2:这两个角具有什么样的关系?我们是否得到一个判定两直线平行的方法?
讨论结果:平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单记为:同位角相等,两条直线平行。
用符号语言表达两直线平行的判定方法1:
如果∠1=∠2,那么AB∥CD.
问题3:木工用角尺画平行线的过程中,试说出用角尺画平行线的道理(课本14页图5.2—7)
2. 平行线的判定方法2
问题4.在判定方法1的图中,如果∠PHF=∠HGA,那么AB∥CD,为什么?
分析:目前我们掌握了两种判定两直线平行的方法,但问题的条件都不符合,而根据问题情境,可以利用判定方法1同位角相等,两直线平行来解决问题,这就需要将问题中的内错角相等转化为同位角相等。
可以先放手让学生尝试独立解决,后小组交流
活动:因为∠PHF=∠HGA,而∠BGF=∠HGA(对顶角相等)
所以∠1=∠2,即同位角相等.
因此AB∥CD
讨论结果:归纳判定两条直线平行的判定方法2:
两条直线被第三条直线所截,如果内错角等,那么这两条直线平行。
简单记为:内错角相等,两条直线平行.
用符号语言表达两直线平行的判定方法1:
如果∠PHF=∠HGA, 那么AB∥CD.
3. 平行线的判定方法3
问题5.同旁内角在数量上满足什么关系时,两直线平行
活动:如图 (1)学生根据图象先排除相等当∠4是钝角时,∠2是锐角才有可能使a∥b,进一步观察、猜想:如果同旁内角互补,两条直线平行,即如果∠2+∠4=180°,那么a∥b.
(2)学生利用平行线的判定方法1或方法2来说明猜想的正确性.
教师根据学生说理,再准确板书:
因为∠2+∠4=180°,而∠4+∠1=180°,根据同角的补角相等,所以∠2=∠1,即同位角相等,从而a∥b.
讨论结果: 两条线的判定方法3
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简单记为:同旁内角互补,两条直线平行.
用符号语言表达:如果∠2+∠4=180°,那么a∥b.
(三)即时小结
我们在遇到一个新问题时,常常将未学的知识转化为已知的(或已解决的)问题,在这节课中,平行线的判定方法2、3就是借助于对顶角相等或邻补角互补,将内错角相等转化为同位角相等,或将同旁内角互补转化为同位角相等而得出的,这种将未知转化为已知的方法是数学中的一种重要方法,也是我们今后推理常用的方法.
(四)应用举例
例题:1.如图
(1)∵ ∠ A=_____ (已知)
∴ AB∥dE
(2) ∵ ∠ 1=_____ (已知)
∴ Bd∥cE
(3)∵ ∠ Abd+_____=180 (已知)
∴ AB∥dE
2.已知∠1=45 °,∠3与∠2互余,你能得到a// b ?
练习:1.如图,如果∠3=∠7,那么 _____∥_____,理由是__________ ;如果∠5=∠3,那么_____∥_____,理由是__________ ;如果∠2+∠5= ______°,那么 ∥ ,理由是__________ .
2、如图,∠1=∠2,则下列结论正确的是( )
(A)AD//BC (B)AB//CD
(C)AD//EF (D)EF//BC
3.如图所示,直线 , 被直线 所截,现给 出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明
∥ 的条件序号为( )
A.①② B.①③ C.①④ D.③④
教师启发学生用化归思想将它转化为已知问题来解决,并且有条理地陈述理由。
(五)巩固训练,熟练技能
1、判断题
(1)两条直线被第三条直线所截,如果同位角相等,那么内错角出相等。
(2)两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等。
2、课本P15—17练习.
(六)课堂小结
1.本节主要学行线的三种判定方法.
2.用到的主要思想方法是转化思想.
3.注意的问题是平行线的判定方法的灵活应用.
五、布置作业
课本习题5.2 第2、4、5 题
六、板书设计
同位角相等,两条直线平行 例题讲解
内错角相等,两条直线平行
同旁内角互补,两条直线平行
如果∠1=∠2,那么AB∥CD.