人教版八年级数学下17.1勾股定理(3) 利用勾股定理在数轴上表示无理数

文档属性

名称 人教版八年级数学下17.1勾股定理(3) 利用勾股定理在数轴上表示无理数
格式 docx
文件大小 82.3KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-12-03 14:02:17

图片预览

文档简介

在数轴上表示无理数
一、教学目标
知识与技能
1.利用勾股定理,能在数轴上找到表示无理数的点.
2.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.
过程与方法
1.经历在数轴上寻找表示地理数的总的过程,发展学生灵活勾股定理解决问题的能力.
2.在用勾股定理解决实际问题的过程中,体验解决问题的策略,发展学生的动手操作能力和创新精神.
3.在解决实际问题的过程中,学会与人合作,并能与他人交流思维过程和结果,形成反思的意识.
情感、态度与价值观
1.在用勾股定理寻找数轴上表示无理数点的过程中,体验勾股定理的重要作用,并从中获得成功的体验,锻炼克服困难的意志,建立自信心.
2.在解决实际问题的过程中,形成实事求是的态度以及进行质疑和独立思考的习惯.
二、教学重、难点
重点: 在数轴上寻找表示,,,,……这样的表示无理数的点.
难点 利用勾股定理寻找直角三角形中长度为无理数的线段.
三、教学准备
多媒体课件
四、教学方法
分组讨论,讲练结合
五、教学过程
(一)复习回顾,引入新课
复习勾股定理的内容。本节课探究勾股定理的综合应用。
我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出的点吗?的点呢?
设计意图:
上一节,我们利用勾股定理可以解决生活中的不少问题.在初一时我们只能找到数轴上的一些表示有理数的点,而对于象,,……这样的无理数的数点却找不到,学习了勾股定理后,我们把,,……可以当直角三角形的斜边,只要找到长为,的线段就可以,勾股定理的又一次得到应用.
师生行为:
学生小组交流讨论
教师可指导学生寻找象,,……这样的包含在直角三角形中的线段.
此活动,教师应重点关注:
①学生能否找到含长为,这样的线段所在的直角三角形;
②学生是否有克服困难的勇气和坚强的意志;
③学生能否积极主动地交流合作.
师:由于在数轴上表示的点到原点的距离为,所以只需画出长为的线段即可.
我们不妨先来画出长为的线段.
生:长为的线段是直角边都为1的直角三角形的斜边.
师:长为的线段能否是直角边为正整数的直角三角形的斜边呢?
生:设c=,两直角边为a,b,根据勾股定理a2+b2=c2即a2+b2=13.若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3.所以长为的线段是直角边为2,3的直角三角形的斜边.
师:下面就请同学们在数轴上画出表示的点.
生:步骤如下:
1.在数轴上找到点A,使OA=3.
2.作直线L垂直于OA,在L上取一点B,使AB=2.
3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点.
(二)新课教授
例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4 800米处,过了10秒后,飞机距离这个男孩头顶5 000米,飞机每小时飞行多少千米?
分析:根据题意,可以画出图,A点表示男孩头顶的位置,C、B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.
解:根据题意,得Rt△ABC中,∠C=90°,AB=5 000米,AC=4 800米.由勾股定理,得AB2=AC2+BC2.即5 0002=BC2+4 8002,所以BC=1 400米.
飞机飞行1 400米用了10秒,那么它1小时飞行的距离为1 400×6×60=50 400米=504千米,即飞机飞行的速度为504千米/时.
评注:这是一个实际应用问题,经过分析,问题转化为已知两边求直角三角形等三边的问题,这虽是一个一元二次方程的问题,学生可尝试用学过的知识来解决.同时注意,在此题中小孩是静止不动的.
例2、如右图所示,某人在B处通过平面镜看见在B正上方5米处的A物体,已知物体A到平面镜的距离为6米,向B点到物体A的像A′的距离是多少?
分析:此题要用到勾股定理,轴对称及物理上的光的反射知识.
解:如例2图,由题意知△ABA′是直角三角形,由轴对称及平面镜成像可知:
AA′=2×6=12米,AB=5米;
在Rt△A′AB中,A′B2=AA′2+AB2=122+52=169=132米.
所以A′B=13米,即B点到物体A的像A′的距离为13米.
评注:本题是以光的反射为背景,涉及到勾股定理、轴对称等知识.由此可见,数学是物理的基础.
例3、在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?
解:根据题意,得到右图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD.
所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,
AC2+6AC+9=AC2+36.6AC=27,AC=4.5,所以这里的水深为4.5分米.
评注:在几何计算题中,方程的思想十分重要.
设计意图:
让学生进一步体会勾股定理在生活中的应用的广泛性,同时经历勾股定理在物理中的应用,由此可知数学是物理的基础,方程的思想是解决数学问题的重要思想.
师生行为:
先由学生独立思考,完成,后在小组内讨论解决,教师可深入到学生的讨论中去,对不同层次的学生给予辅导.
在此活动中,教师应重点关注:
学生是否自主完成上面三个例题;
②学生是否有综合应用数学知识的意识,特别是学生是否有在解决数学问题过程中应用方程的思想.
例4、练习:在数轴上作出表示的点.
解:是两直角边为4和1的直角三角形的斜边,因此,在数轴上画出表示的点如下图:
设计意图:
进一步巩固在数轴上找表示无理数的点的方法,熟悉勾股定理的应用.
师生行为:
由学生独立思考完成,教师巡视.
此活动中,教师应重点关注:
(1)生能否积极主动地思考问题;
(2)能否找到斜边为,另外两个角直边为整数的直角三角形.
例5 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。教学中要逐层展示给学生,让学生深入体会。
解:延长AD、BC交于E。
∵∠A=∠60°,∠B=90°,∴∠E=30°。
∴AE=2AB=8,CE=2CD=4,
∴BE2=AE2-AB2=82-42=48,BE==。
∵DE2= CE2-CD2=42-22=12,∴DE==。
∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=
小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差.
(三)例题讲解
例1.△ABC中,AB=AC=25cm,高AD=20cm,则BC= ,S△ABC= 。
解:30cm,300cm2
例2.△ABC中,若∠A=2∠B=3∠C,AC=cm,则∠A= 度,∠B= 度,∠C= 度,BC= ,S△ABC= 。
解:90,60,30,4,
例3.△ABC中,∠C=90°,AB=4,BC=,CD⊥AB于D,则AC= ,CD= ,BD= ,AD= ,S△ABC= 。
解:2,,3,1,
例4.已知:如图,△ABC中,AB=26,BC=25,AC=17,
求S△ABC。
解:作BD⊥AC于D,设AD=x,则CD=17-x,252-x2=262-(17-x)2,x=7,BD=24,
S△ABC=AC·BD=254
(四)巩固练习
1.在Rt△ABC中,∠C=90°,CD⊥BC于D,∠A=60°,CD=,AB= 。
2.在Rt△ABC中,∠C=90°,S△ABC=30,c=13,且a<b,则a= ,b= 。
3.已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=,
求(1)AB的长;(2)S△ABC。
4.在数轴上画出表示-的点。
答案
1.4;
2.5,12;
3.提示:作AD⊥BC于D,AD=CD=2,AB=4,BD=,BC=2+,S△ABC= =2+;
4.略。
(五)课堂小结
1、进一步掌握利用勾股定理解决直角三角形问题;
2、你对本节内容有哪些认识?会利用勾股定理得到一些无理数并理解数轴上的点与实数一一对应.
六、板书设计
18.1 勾股定理
复习勾股定理相关内容 问题引入: 你能在数轴上表示出的点吗?的点呢? 新课教授: 在数轴上表示无理数的方法和步骤 强调:理解数轴上的点与实数一一对应. 例题讲解: 例1 例2 随堂练习 小结 1、利用勾股定理解决直角三角形问题 2、会利用勾股定理得到一些无理数 布置作业:
七、课后作业
1.在Rt△ABC中,∠C=90°,CD⊥BC于D,∠A=60°,CD=,AB= 。
2.在Rt△ABC中,∠C=90°,S△ABC=30,c=13,且a<b,则a= ,b= 。
3.已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=,
求(1)AB的长;(2)S△ABC。
4.已知:如图,△ABC中,AB=26,BC=25,AC=17,
求S△ABC。
答案:
1.4;
2.5,12;
3.提示:作AD⊥BC于D,AD=CD=2,AB=4,BD=,BC=2+,S△ABC= =2+;
4.作BD⊥AC于D,设AD=x,则CD=17-x,252-x2=262-(17-x)2,x=7,BD=24,
S△ABC=AC·BD=254;