陕西省汉中市四校联考2022届高三上学期11月考试数学(理)试题(Word版含答案)

文档属性

名称 陕西省汉中市四校联考2022届高三上学期11月考试数学(理)试题(Word版含答案)
格式 zip
文件大小 812.2KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2021-12-03 12:28:18

文档简介

理科数学参考答案
选择题:本大题共12小题,每小题5分,共60分.
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 A D B A D C C B D C C A
二、填空题:本大题共4小题,每小题5分,共20分.
13. 14. 48 15. 16. ①②
三、解答题:共70分.第17~21题是必考题,第22、23题是选考题,考生根据情况作答.
(一)必考题:每小题12分,共60分.
17. 解:(1),·······························2分
,··························4分
因为回归方程为,所以有,······················································5分
解得;·································································6分
由(1)得,,····························································7分
再由,··············································9分
解得···························································11分
所以预测该景点旅游收入2024年首次超过1.6亿元.···························12分
18. 解:(1)设的公差为,,·······································1分
因为,,成等比数列,,可得,·······2分
,·······························································3分

,··································································4分
又,
解得,,·························································5分
.·····························································6分
(2)················· ·········8分
····················10分
.·················································12分
19.(1)证明:取的中点,连接、,···········(有图示)·········1分
、分别为、的中点,则且,···················2分
由已知条件可得且,且,·················3分
故四边形为平行四边形,所以,,······························4分
平面,平面,因此,平面;···················6分
(2)因为底面,,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,···································7分
为等边三角形,,不妨设,
则、、、,,,·8分
设平面的法向量为,
由,得,令,得,,,········9分
易知平面,平面的一个法向量为,··················10分
,··········································11分
二面角的正弦值为 ·····································12分
20. (1)由题设知:由左 右焦点分别为,,上顶点为B,且,
∴△和△均为等腰直角三角形,且,
∴,即C的标准方程为.····································4分
由(1)知:,,直线的斜率不为0,
可设直线为······················································5分
∴代入椭圆方程整理得:,若,
∴则,························6分
∴,·········7分
而到直线的距离,············································8分
故,·····································9分
又△的内切圆的周长为,若内切圆半径为r,则,而△的周长为,·······················································10分
∴,即,解得,····················11分
∴直线的方程为.·············································12分
21.解:(1)因为,
所以,······························1分
因为在上单调递增
所以在上恒成立··············································2分
所以在上恒成立,
所以在在上恒成立,·······································3分

所以在上递减,··················································4分
所以
所以····························································5分
(2)令,·
则,································6分
所以在上递增,················································7分
当时,,当 时, ,··················8分
所以存在 ,有 ,即,·则在上递减,在上递增,·······················································10分
所,
所以··········· ···························12分
(二)选考题:共10分.考生从22、23题中任选一题作答,如果多做,则按所做的第一题计分.
22. (1)由消去参数t,得,即,
所以曲线的普通方程为.······································2分
由,得,即,
所以曲线的直角坐标方程为·································5分
(2)将代入,整理得,···········7分
则,令方程的两个根为
由韦达定理,,·····················································9分
所以·····················································10分
23. (1)当时,.··································1分
当时,,解得,此时;················2分
当时,,解得,此时;··············3分
当时,,解得,此时.·················4分
因此,当时,不等式的解集为;····························5分
(2)当时,可化为,················6分
所以,或,································7分
即存在,使得或.
,因为,所以,则,····8分
,因为,所以,所以,··9分
因此,实数的取值范围为.······························10分汉中市四校联考2022届高三11月考试
数学(理)试题(卷)
本试卷共23小题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若复数,则的虚部为( )
A. B. C. D.
2.已知集合,,则( )
A. B. C. D.
3.已知命题:,,命题:,.下面结论正确的是( )
A.命题“”是真命题 B.命题“”是假命题
C.命题“”是假命题 D.命题“”是真命题
4.已知是上的奇函数,且,当时,,则( )
A.-1 B.0 C.1 D.2
5.在正方体中,是棱AB上的点,且,G,F分别是棱,BC的中点,则异面直线与EF所成角的余弦值为( )
A. B. C. D.
6.第24届冬季奥运会将于2022年2月4日在北京开幕.为保证冬奥会顺利进行,组委会需要提前把各项工作安排好.现要把甲、乙、丙、丁四名志愿者安排到七天中服务,每天一人,甲两天,乙三天,丙和丁各一天,则不同的安排方法有( )
A.840种 B.140种 C.420种 D.210种
7.将函数图象上每个点的横坐标变为原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度,所得图象的函数解析式为( ).
A. B. C. D.
8.2021年中国人民银行计划发行个贵金属纪念币品种,以满足广大收藏爱好者的需要,其中牛年生肖币是收藏者的首选.为了测算如图所示的直径为的圆形生肖币中牛形图案的面积,进行如下实验,即向该圆形生肖币内随机投掷个点,若恰有个点落在牛形图案上,据此可估算牛形图案的面积是( )
B. C. D.
9.已知双曲线:(,)的左 右焦点分别为,,为左支上一点,,,则的离心率为( )
A. B.2 C. D.
10.已知函数,则( )
A.的单调递减区间为 B.的极小值点为1
C.的极大值为 D.的最小值为
11.英国数学家约翰 康威在数学上的成就是全面性的,其中“康威圆定理”是他引以为傲的研究成果之一.定理的内容是:三角形ABC的三条边长分别为a,b,c,分别延长三边两端,使其距离等于对边的长度,如图所示,所得六点仍在一个圆上,这个圆被称为康威圆.现有一边长为2的正三角形,则该三角形生成的康威圆的面积是( )
A. B. C. D.
12. 设,若函数的值域是,则函数的零点的个数是( )
A.2 B. 1或2 C. 1 D. 0
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分.
13.抛物线的焦点为,第一象限的点在上,且,则的坐标是___.
14.若向量,,则___________.
15.在中,若,,,则______.
16.现有编号为①、②、③的三个三棱锥(底面水
平放置),俯视图分别为图1、图2、图3,则至少存
在一个侧面与此底面互相垂直的三棱锥的所有编号
是___
解答题:共70分. 解答题写出文字说明、证明过程和演算步骤. 第17~21题是必考题,每个考生都必须作答. 第22、23题是选考题,考生根据要求作答.
(一)必考题:共60分.
17. (本小题满分12分)某旅游景点努力打造一流旅游区,吸引更多的游客前来观光旅游,据统计,该景点2013年到2019年游客人数与对应年份代号的数据如下:
年份 2013 2014 2015 2016 2017 2018 2019
年份代号 1 2 3 4 5 6 7
游客人数(单位:万人) 29 33 36 48 52 59
(1)若关于具有较强的线性相关关系,且回归方程为,且,求;
(2)若每位游客平均为景区带来200元收入,根据(1)中结论,预测该景点旅游收入首次超过16000万元的年份.
18.(本小题满分12分)已知数列是公差不为零的等差数列,,且,,成等比数列.(1)求数列的通项公式;
(2)设,求数列的前项和.
19.(本小题满分12分)如图,四棱锥中,底面,,,,为的中点.
(1)证明:平面;
(2)若是等边三角形,求二面角的正弦值.
20.(本小题满分12分) 已知椭圆的左 右焦点分别为,,上顶点为B,且.
(1)求C的标准方程;
(2)过点的直线交C于M,N两点,若△的内切圆的周长为,求直线的方程.
21. (本小题满分12分)已知函数.
(1)若在上单调递增,求实数的取值范围;
(2)若,证明:
(二)选考题:共10分. 考生从22、23题中任选一题作答,如果多做,则按所做的第一题计分. 作答时用2B铅笔在答题卡上将所选题目对应的题号涂黑.
22.(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,曲线的参数方程为,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程:
(2)已知,曲线与曲线相交于A,B两点,求.
23.(本小题满分10分)选修4-5:不等式选讲
已知函数.
(1)当时,求不等式的解集;
(2)若,使得不等式成立,求实数的取值范围.
2022届高三11月考试 数学(理) 第 页 共4页
同课章节目录