2021-2022学年北师大版九年级数学下册3.7切线长定理优生辅导训练(word解析版)

文档属性

名称 2021-2022学年北师大版九年级数学下册3.7切线长定理优生辅导训练(word解析版)
格式 doc
文件大小 537.6KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2021-12-06 11:32:47

图片预览

文档简介

2021-2022学年北师大版九年级数学下册《3.7切线长定理》优生辅导训练(附答案)
1.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点A为60°角与直尺交点,点B为光盘与直尺唯一交点,若AB=3,则光盘的直径是(  )
A.6 B.3 C.6 D.3
2.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若△PCD的周长等于3,则PA的值是(  )
A. B. C. D.
3.如图,⊙O为△ABC的内切圆,AC=10,AB=8,BC=9,点D,E分别为BC,AC上的点,且DE为⊙O的切线,则△CDE的周长为(  )
A.9 B.7 C.11 D.8
4.如图,在等腰三角形ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于(  )
A. B. C. D.1
5.如图,PA、PB切⊙O于点A、B,直线FG切⊙O于点E,交PA于F,交PB于点G,若PA=8cm,则△PFG的周长是(  )
A.8cm B.12cm C.16cm D.20cm
6.如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线,与边BC交于点E,若AD=,AC=3.则DE长为(  )
A. B.2 C. D.
7.已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.以下结论:①AD∥OC;②点E为△CDB的内心;③FC=FE;④CE FB=AB CF.其中正确的只有(  )
A.①② B.②③④ C.①③④ D.①②④
8.如图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=(  )
A. B. C. D.
9.如图,一个菱形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿此菱形的四边做无滑动旋转,直至回到原出发位置时,这个圆共转了(  )
A.6圈 B.5圈 C.4.5圈 D.4圈
10.如图,⊙O是四边形ABCD的内切圆,下列结论一定正确的有(  )个:
①AF=BG;②CG=CH;③AB+CD=AD+BC;④BG<CG.
A.1 B.2 C.3 D.4
11.如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=110°,则∠COD的度数是   °.
12.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AD边于点E,若△CDE的周长为12,则直角梯形ABCE周长为    .
13.如图所示,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=15,则△PCD的周长为   .
14.如图,正方形ABCD的边长为4,以AB为直径向正方形内作半圆,CE与DF是半圆的切线,M,N为切点,CE,DF交于点P.则AE=   ,△PMN的面积是   .
15.如图,PA、PB分别切⊙O于A、B.PA=5,在劣弧上取点C,过C作⊙O的切线,分别交PA,PB于D,E,则△PDE的周长等于   .
16.已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.
(1)若PA=6,求△PCD的周长.
(2)若∠P=50°求∠DOC.
17.如图,PA、PB是⊙O的切线,切点分别是A、B,直线EF也是⊙O的切线,切点为Q,交PA、PB于点E、F,已知PA=12cm,∠P=40°
①求△PEF的周长;
②求∠EOF的度数.
18.已知:AB为⊙O的直径,∠BAD=∠B=90°,DE与⊙O相切于E,⊙O的半径为,AD=2.
①求BC的长;
②延长AE交BC的延长线于G点,求EG的长.
19.如图,⊙O的直径AB=18,AC和BD是它的两条切线,CD与⊙O相切于E,且与AC、BD相交于点C、D,设
AC=x,BD=y,试求xy的值.
20.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.
(1)求边AD、BC的长;
(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.
21.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E.
(1)若PA=4,求△PED的周长;
(2)若∠P=40°,求∠AFB的度数.
22.如图,AB为⊙O直径,PA、PC分别与⊙O相切于点A、C,PQ⊥PA,PQ交OC的延长线于点Q.
(1)求证:OQ=PQ;
(2)连BC并延长交PQ于点D,PA=AB,且CQ=6,求BD的长.
23.如图所示,PA,PB是⊙O的两条切线,A,B为切点,连接PO,交⊙O于点D,交AB于点C,根据以上条件,请写出三个你认为正确的结论,并对其中的一个结论给予证明.
24.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E.若PA=4,求△PED的周长.
25.如图,边长为1的正方形ABCD的边AB是⊙O的直径,CF是⊙O的切线,E为切点,F点在AD上,BE是⊙O的弦,求△CDF的面积.
26.如图,PA、PB、DE切⊙O于点A、B、C、D在PA上,E在PB上,
(1)若PA=10,求△PDE的周长.
(2)若∠P=50°,求∠O度数.
27.如图,AC是⊙O的直径,∠ACB=60°,连接AB,分别过A、B作圆O的切线,两切线交于点P,若已知⊙O的半径为1,求△PAB的周长.
参考答案
1.解:设三角板与圆的切点为C,连接OA、OB,
由切线长定理知AB=AC=3,OA平分∠BAC,
∴∠OAB=60°,
在Rt△ABO中,OB=ABtan∠OAB=3,
∴光盘的直径为6,
故选:A.
2.解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,
∴AC=EC,DE=DB,PA=PB
∵△PCD的周长等于3,
∴PA+PB=3,
∴PA=.
故选:A.
3.解:设AB,AC,BC,DE和圆的切点分别是P,N,M,Q,CM=x,根据切线长定理,得
CN=CM=x,BM=BP=9﹣x,AN=AP=10﹣x.
则有9﹣x+10﹣x=8,
解得:x=5.5.
所以△CDE的周长=CD+CE+QE+DQ=2x=11.
故选:C.
4.解:连OM,ON,如图,
∵MD,MF与⊙O相切,
∴∠1=∠2,
同理得∠3=∠4,
而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC
∴∠2+∠3+∠B=180°;
而∠1+∠MOB+∠B=180°,
∴∠3=∠MOB,即有∠4=∠MOB,
∴△OMB∽△NOC,
∴=,
∴BM CN=BC2,
∴=.
故选:B.
5.解:根据切线长定理可得:PA=PB,FA=FE,GE=GB;
所以△PFG的周长=PF+FG+PG,
=PF+FE+EG+PG,
=PF+FA+GB+PG,
=PA+PB
=16cm,
故选:C.
6.解:连接OD,CD.
∵AC为⊙O的直径,
∴∠ADC=90°,
∵AD=,AC=3.
∴CD=,
∵OD=OC=OA,
∴∠OCD=∠ODC,
∵DE是切线,
∴∠CDE+∠ODC=90°.
∵∠OCD+∠DCB=90°,
∴∠BCD=∠CDE,
∴DE=CE.
∴△ADC∽△ACB,
∴∠B=∠ACD,
∴=,
∴BC===4,
∵∠ACD+∠DCB=90°,
∴∠B+∠DCB=90°,∠B+∠CDE=90°,∠CDE+∠BDE=90°,
∴∠B=∠BDE,
∴BE=DE,
∴BE=CE=DE.
∴DE=BC=×4=2.
故选:B.
7.解:连接OD,DE,EB,
CD与BC是⊙O的切线,∠ODC=∠OBC=90°,OD=OB,
∵OC=OC
∴Rt△CDO≌Rt△CBO,
∴∠COD=∠COB,
∴∠COB=∠DAB=∠DOB,
∴AD∥OC,故①正确;
∵CD是⊙O的切线,
∴∠CDE=∠DOE,而∠BDE=∠BOE,
∴∠CDE=∠BDE,即DE是∠CDB的角平分线,同理可证得BE是∠CBD的平分线,
因此E为△CBD的内心,故②正确;
若FC=FE,则应有∠OCB=∠CEF,应有∠CEF=∠AEO=∠EAB=∠DBA=∠DEA,
∴弧AD=弧BE,而弧AD与弧BE不一定相等,故③不正确;
设AE、BD 交于点G,由②可知∠EBG=∠EBF,
又∵BE⊥GF,
∴FB=GB,
由切线的性质可得,点E是弧BD的中点,∠DCE=∠BCE,
又∵∠MDA=∠DCE(平行线的性质)=∠DBA,
∴∠BCE=∠GBA,
而∠CFE=∠ABF+∠FAB,∠DGE=∠ADB+∠DAG,∠DAG=∠FAB(等弧所对的圆周角相等),
∴∠AGB=∠CFE,
∴△ABG∽△CEF,
∴CE GB=AB CF,
又∵FB=GB,
∴CE FB=AB CF
故④正确.
因此正确的结论有:①②④.
故选:D.
8.解:取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F
∵AB,AE都为圆的切线
∴AE=AB
∵OB=OE,AO=AO
∴△ABO≌△AEO(SSS)
∴∠OAB=∠OAE
∴AO⊥BE
在直角△AOB里AO2=OB2+AB2
∵OB=1,AB=3
∴AO=
易证明△BOF∽△AOB
∴BO:AO=OF:OB
∴1:=OF:1
∴OF=
sin∠CBE==
故选:D.
9.解:∵菱形的边长与它的一边相外切的圆的周长相等
∴圆在菱形的边上转了4圈
∵圆在菱形的四个顶点处共转了360°,
∴圆在菱形的四个顶点处共转1圈
∴回到原出发位置时,这个圆共转了5圈.
故选:B.
10.解:∵⊙O是四边形ABCD的内切圆,
∴AF=AE,BF=BG,CG=CH,DH=DE,
∴AB+CD=AF+BF+CH+DH=AE+BG+CG+DE=AD+BC.
①AF=BG;④BG<CG无法判断.
正确的有②③.
故选:B.
11.解:如图所示:连接圆心与各切点,
在Rt△DEO和Rt△DFO中

∴Rt△DEO≌Rt△DFO(HL),
∴∠1=∠2,
同理可得:Rt△AFO≌Rt△AMO,Rt△BMO≌Rt△BNO,
Rt△CEO≌Rt△CNO,
∴∠3=∠4,∠5=∠7,∠6=∠8,
∴∠5+∠6=∠7+∠8=110°,
∴2∠2+2∠3=360°﹣2×110°,
∴∠2+∠3=∠DOC=70°.
故答案为:70°.
12.解:设AE的长为x,正方形ABCD的边长为a,
∵CE与半圆O相切于点F,
∴AE=EF,BC=CF,
∵EF+FC+CD+ED=12,
∴AE+ED+CD+BC=12,
∵AD=CD=BC=AB,
∴正方形ABCD的边长为4;
在Rt△CDE中,ED2+CD2=CE2,即(4﹣x)2+42=(4+x)2,解得:x=1,
∴AE+EF+FC+BC+AB=14,
∴直角梯形ABCE周长为14.
故答案为:14.
13.解:∵PA、PB切⊙O于A、B,
∴PA=PB=15;
同理,可得:EC=CA,DE=DB;
∴△PDC的周长=PC+CE+DE+DP=PC+AC+PD+DB=PA+PB=2PA=30.
即△PCD的周长是:30.
故答案为:30.
14.解:(1)由切线长定理知:AE=EM,CM=CB;
∵CD=CB,
∴CM=CD=4.
设AE=EM=x,则DE=4﹣x,CE=CM+EM=4+x;
在Rt△CDE中,由勾股定理得:
(4﹣x)2+42=(4+x)2,解得x=1;
故AE=1.
(2)同(1)可求得BF=FN=1,则DF=CE=5,DE=CF=3;
则可证得Rt△CDE≌Rt△DCF;
∴∠DCP=∠CDP,即DP=CP,
∴PM=PN;
故△DPC∽△NPM,且MN∥CD;
设MN所在直线与AD、BC的交点为R、T,则MR⊥AD,NT⊥BC;
在Rt△MRE中,ME=1,则ER=ME cos∠DEC=,MR=ME sin∠DEC=;
过P作PG⊥MN于G,则RG=GT=2,MG=2﹣RM=;
易知RE∥PG,则△REM∽△GPM,
∴=()2=;
∵S△REM=MR RE=××=,
∴S△PMG=×=,
故S△PMN=2S△PMG=.
15.解:∵PA、PB、DE分别切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=10;
故△PDE的周长为10.
16.解:(1)连接OE,
∵PA、PB与圆O相切,
∴PA=PB=6,
同理可得:AC=CE,BD=DE,
△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;
(2)∵PA PB与圆O相切,
∴∠OAP=∠OBP=90°∠P=50°,
∴∠AOB=360°﹣90°﹣90°﹣50°=130°,
在Rt△AOC和Rt△EOC中,

∴Rt△AOC≌Rt△EOC(HL),
∴∠AOC=∠COE,
同理:∠DOE=∠BOD,
∴∠COD=∠AOB=65°.
17.解:①∵PA、PB是⊙O的切线,
∴PA=PB,
又∵直线EF是⊙O的切线,
∴EB=EQ,FQ=FA,
∴△PEF的周长=PE+PF+EF=PE+PF+EB+FA=PA+PB=2PA=24cm;
②连接OE,OF,则OE平分∠BEF,OF平分∠AFE,
则∠OEF+∠OFE=(∠P+∠PFE)+∠(P+∠PEF)=(180°+40°)=110°,
∴∠EOF=180°﹣110°=70°.
18.解:①过点D作DF⊥BC于点F,
∵AB为⊙O的直径,∠BAD=∠B=90°,
∴四边形ABFD是矩形,AD与BC是⊙O的切线,
∴DF=AB=2,BF=AD=2,
∵DE与⊙O相切,
∴DE=AD=2,CE=BC,
设BC=x,
则CF=BC﹣BF=x﹣2,DC=DE+CE=2+x,
在Rt△DCF中,DC2=CF2+DF2,
即(2+x)2=(x﹣2)2+(2)2,
解得:x=,
即BC=;
②∵AB为⊙O的直径,∠BAD=∠B=90°,
∴AD∥BC,
∴△ADE∽△GCE,
∴AD:CG=DE:CE,AE:EG=AD:CG,
∵AD=DE=2,
∴CG=CE=BC=,
∴BG=BC+CG=5,
∴AE:EG=4:5,
在Rt△ABG中,AG==3,
∴EG=AG=.
19.解:连接OC,OD.
∵AB=18,∴OA=OB=9,
∵AC和BD是它的两条切线,
∴OA⊥AC,OB⊥BD,
∴AC∥BD,
∴∠ACD+∠BDE=180°,
∴∠OCD+∠ODC=90°,
∵AC=x,BD=y,
∴OC=,OD=,
∵CD是圆O的切线,
∴CE=AC=x,DE=BD=y,
∴OC2+OD2=CD2,
即x2+81+y2+81=(x+y)2,
整理得2xy=162,
∴xy=81.
20.解:(1)方法1:过D作DF⊥BC于F,
在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6,
∴DC2=62+82=100,即DC=10.
设AD=x,则DE=AD=x,EC=BC=x+6,
∴x+(x+6)=10.
∴x=2.
∴AD=2,BC=2+6=8.
方法2:连OD、OE、OC,
由切线长定理可知∠DOC=90°,AD=DE,CB=CE,
设AD=x,则BC=x+6,
由射影定理可得:OE2=DE EC.
即:x(x+6)=16,
解得x1=2,x2=﹣8,(舍去)
∴AD=2,BC=2+6=8.
(2)存在符合条件的P点.
设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况:
①△ADP∽△BCP时,∴y=;
②△ADP∽△BPC时,∴y=4.
故存在符合条件的点P,此时AP=或4.
21.解:(1)∵DA,DC都是圆O的切线,
∴DC=DA,
同理EC=EB,
∵P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B
∴PA=PB,
∴三角形PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=8,
即三角形PDE的周长是8;
(2)连接AB,
∵PA=PB,
∴∠PAB=∠PBA,
∵∠P=40°,
∴∠PAB=∠PBA=(180﹣40)=70°,
∵BF⊥PB,BF为圆直径
∴∠ABF=∠PBF=90°﹣70°=20°
∴∠AFB=90°﹣20°=70°.
答:(1)若PA=4,△PED的周长为8;
(2)若∠P=40°,∠AFB的度数为70°.
22.(1)证明:连接OP.
∵PA、PC分别与⊙O相切于点A,C,
∴PA=PC,OA⊥PA,
∵OA=OC,OP=OP,
∴△OPA≌△OPC(SSS),
∴∠AOP=∠POC,
∵QP⊥PA,
∴QP∥BA,
∴∠QPO=∠AOP,
∴∠QOP=∠QPO,
∴OQ=PQ.
(2)设OA=r.
∵OB=OC,
∴∠OBC=∠OCB,
∵OB∥QD,
∴∠QDC=∠B,
∵∠OCB=∠QCD,
∴∠QCD=∠QDC,
∴QC=QD=6,∵QO=QP,
∴OC=DP=r,
∵PC是⊙O的切线,
∴OC⊥PC,
∴∠OCP=∠PCQ=90°,
在Rt△PCQ中,∵PQ2=PC2+QC2,
∴(6+r)2=62+(2r)2,
r=4或0(舍弃),
∴OP==4,
∵OB=PD,OB∥PD,
∴四边形OBDP是平行四边形,
∴BD=OP=4.
23.解:如图所示,结论:①∠3=∠4;或∠7=∠8;或∠1=∠5;或∠2=∠6;
②OP⊥AB;③AC=BC.
证明②:∵PA、PB是⊙O的切线,
∴OA⊥PA,OB⊥PB,
∴∠OAP=∠OBP=90°.
在Rt△OAP与Rt△OBP中,
∵,
∴△OAP≌△OBP(HL),
∴PA=PB,∠3=∠4,
∴OP⊥AB.
24.解:∵PA、PB分别与⊙O相切于点A、B,
∴PA=PB=4,
∵过点C的切线分别交PA、PB于点D、E,
∴DC=DA,EC=EB,
∴△PED的周长=PD+DE+PE=PD+DC+CE+PE=PD+DA+EB+PE=PA+PB=4+4=8.
25.解:设AF=x,
∵四边形ABCD是正方形,
∴∠DAB=90°,
∴DA⊥AB,
∴AD是圆的切线,
∵CF是⊙O的切线,E为切点,
∴EF=AF=x,
∴FD=1﹣x,
∵CB⊥AB,
∴CB 为⊙O 的切线,
∴CB=CE,
∴CF=CE+EF=CB+EF=1+x.
∴在Rt△CDF中由勾股定理得到:CF2=CD2+DF2,
即(1+x)2=1+(1﹣x)2,
解得x=,
∴DF=1﹣x=,
∴S△CDF=×1×=.
26.解:(1)∵PA、PB、DE分别切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=10+10=20;
∴△PDE的周长为20;
(2)连接OA、OC、0B,
∵OA⊥PA,OB⊥PB,OC⊥DE,
∴∠DAO=∠EBO=90°,
∴∠P+∠AOB=180°,
∴∠AOB=180°﹣50°=130°
∵∠AOD=∠DOC,∠COE=∠BOE,
∴∠DOE=∠AOB=×130°=65°.
27.解:∵PA,PB是圆O的切线.
∴PA=PB,∠PAB=60°
∴△PAB是等边三角形.
在直角△ABC中,AB=AC sin60°=2×=
∴△PAB的周长为PA+PB+AB=3.