第六单元《一次函数》2021年中考真题提优单元测试 2021-2022学年苏科版八年级数学上册(word版含答案)

文档属性

名称 第六单元《一次函数》2021年中考真题提优单元测试 2021-2022学年苏科版八年级数学上册(word版含答案)
格式 docx
文件大小 567.1KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2021-12-11 08:43:31

图片预览

文档简介

2021-2022学年苏科版八年级数学(上)第六单元《一次函数》2021年中考真题提优单元测试
一、选择题
1.(2021.苏州)已知点A(,m),B(,n)在一次函数y=2x+1的图象上,则m与n的大小关系是(  )
A.m>n B.m=n C.m<n D.无法确定
2.(2021.长沙)下列函数图形中,表示直线y=2x+1的是( )
3.(2021.沈阳)一次函数y=-3x+1的图像不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.(2021·武威)将直线向下平移2个单位长度,所得直线的表达式为( )
A. B. C. D.
5.(2021·安徽)某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为( )
A.23cm B.24cm C.25cm D.26cm
6.(2021.陕西)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为(  )
A.﹣5 B.5 C.﹣6 D.6
7.(2021.扬州) 如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为(  )
A.+ B.3 C.2+ D.+
8.(2021·乐山)如图,已知直线与坐标轴分别交于、两点,那么过原点且将的面积平分的直线的解析式为( )
A. B. C. D.
9.(2021·重庆)甲无人机从地面起飞,乙无人机从距离地面20m高的楼顶起飞,两架无人机同时匀速上升10s.甲、乙两架无人机所在的位置距离地面的高度y(单位:m)与无人机上升的时间x(单位:s)之间的关系如图所示.下列说法正确的是( )
A.5s时,两架无人机都上升了40m
B.10s时,两架无人机的高度差为20m
C.乙无人机上升的速度为8m/s
D.10s时,甲无人机距离地面的高度是60m
10.(2021.嘉兴)已知点P(a,b)在直线y=﹣3x﹣4上,且2a﹣5b≤0,则下列不等式一定成立的是(  )
A.≤ B.≥ C.≥ D.≤
11.(2021.苏州)已知点,在一次函数的图像上,则与的大小关系是( )
A. B. C. D. 无法确定
12.(2021.邵阳)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.如图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是(  )
A.小明修车花了15min
B.小明家距离学校1100m
C.小明修好车后花了30min到达学校
D.小明修好车后骑行到学校的平均速度是3m/s
二、填空题
13.(2021·眉山)一次函数的值随值的增大而减少,则常数的取值范围是______.
14.(2021.自贡)当自变量时,函数(k为常数)的最小值为,则满足条件的k的值为_________.
15.(2021·上海)已知函数经过二、四象限,且函数不经过,请写出一个符合条件的函数解析式_________.
16.(2021·苏州)若,且,则的取值范围为______.
17.(2021·天津)将直线向下平移2个单位长度,平移后直线的解析式为_____.
18.(2021·成都)在正比例函数中,y的值随着x值的增大而增大,则点在第______象限.
19.(2021·上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.
三、解答题
20.(2021.宿迁)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:
(1)快车的速度为 km/h,C点的坐标为 .
(2)慢车出发多少小时后,两车相距200km。
21.(2021.丽水)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:
(1)直接写出工厂离目的地的路程;
(2)求s关于t的函数表达式;
(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?
22.(2021·资阳)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的,应如何购买才能使总费用最少?并求出最少费用.
23.(2021·连云港)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.
(1)这两种消毒液的单价各是多少元?
(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.
24.(2021·云南)某鲜花销售公司每月付给销售人员的工资有两种方案.
方案一:没有底薪,只付销售提成;
方案二:底薪加销售提成.
如图中的射线,射线分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资(单位:元)和(单位:元)与其当月鲜花销售量x(单位:千克)()的函数关系.
(1)分别求﹑与x的函数解析式(解析式也称表达式);
(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?
25.(2021·陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离与时间之间的关系如图所示.
(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______;
(2)求的函数表达式;
(3)求“猫”从起点出发到返回至起点所用的时间.
26.(2021·衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为,单层部分的长度为.经测量,得到下表中数据.
双层部分长度 2 8 14 20
单层部分长度 148 136 124 112
(1)根据表中数据规律,求出y与x的函数关系式;
(2)按小文的身高和习惯,背带的长度调为时为最佳背带长.请计算此时双层部分的长度;
(3)设背带长度为,求L的取值范围.
27.(2021·天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
已知学校、书店、陈列馆依次在同一条直线上,书店离学校,陈列馆离学校.李华从学校出发,匀速骑行到达书店;在书店停留后,匀速骑行到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离与离开学校的时间之间的对应关系.
请根据相关信息,解答下列问题:
(Ⅰ)填表
离开学校的时间/
离学校的距离/
(Ⅱ)填空:
①书店到陈列馆的距离为________;
②李华在陈列馆参观学的时间为_______h;
③李华从陈列馆回学校途中,减速前的骑行速度为______;
④当李华离学校的距离为时,他离开学校的时间为_______h.
(Ⅲ)当时,请直接写出y关于x的函数解析式.
28.(2021·丽水)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:
(1)直接写出工厂离目的地的路程;
(2)求s关于t的函数表达式;
(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?
29.(2021·宁波)某通讯公司就手机流量套餐推出三种方案,如下表:
A方案 B方案 C方案
每月基本费用(元) 20 56 266
每月免费使用流量(兆) 1024 m 无限
超出后每兆收费(元) n n
A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.
(1)请直接写出m,n的值.
(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.
(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?
2021-2022学年苏科版八年级数学(上)第六单元《一次函数》2021年中考真题单元测试(答案)
一、选择题
1.(2021.苏州)已知点A(,m),B(,n)在一次函数y=2x+1的图象上,则m与n的大小关系是(  )
A.m>n B.m=n C.m<n D.无法确定
【答案】C
2.(2021.长沙)下列函数图形中,表示直线y=2x+1的是( )
3.(2021.沈阳)一次函数y=-3x+1的图像不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】C
4.(2021·武威)将直线向下平移2个单位长度,所得直线的表达式为( )
A. B. C. D.
【答案】A
5.(2021·安徽)某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为( )
A.23cm B.24cm C.25cm D.26cm
【答案】B
6.(2021.陕西)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为(  )
A.﹣5 B.5 C.﹣6 D.6
【答案】B
7.(2021.扬州) 如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为(  )
A.+ B.3 C.2+ D.+
【答案】A
8.(2021·乐山)如图,已知直线与坐标轴分别交于、两点,那么过原点且将的面积平分的直线的解析式为( )
A. B. C. D.
【答案】D
9.(2021·重庆)甲无人机从地面起飞,乙无人机从距离地面20m高的楼顶起飞,两架无人机同时匀速上升10s.甲、乙两架无人机所在的位置距离地面的高度y(单位:m)与无人机上升的时间x(单位:s)之间的关系如图所示.下列说法正确的是( )
A.5s时,两架无人机都上升了40m
B.10s时,两架无人机的高度差为20m
C.乙无人机上升的速度为8m/s
D.10s时,甲无人机距离地面的高度是60m
【答案】B
10.(2021.嘉兴)已知点P(a,b)在直线y=﹣3x﹣4上,且2a﹣5b≤0,则下列不等式一定成立的是(  )
A.≤ B.≥ C.≥ D.≤
【答案】D
11.(2021.苏州)已知点,在一次函数的图像上,则与的大小关系是( )
A. B. C. D. 无法确定
【答案】C
12.(2021.邵阳)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.如图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是(  )
A.小明修车花了15min
B.小明家距离学校1100m
C.小明修好车后花了30min到达学校
D.小明修好车后骑行到学校的平均速度是3m/s
【答案】A
二、填空题
13.(2021·眉山)一次函数的值随值的增大而减少,则常数的取值范围是______.
【答案】
14.(2021.自贡)当自变量时,函数(k为常数)的最小值为,则满足条件的k的值为_________.
【答案】
15.(2021·上海)已知函数经过二、四象限,且函数不经过,请写出一个符合条件的函数解析式_________.
【答案】(且即可)
16.(2021·苏州)若,且,则的取值范围为______.
【答案】
17.(2021·天津)将直线向下平移2个单位长度,平移后直线的解析式为_____.
【答案】
18.(2021·成都)在正比例函数中,y的值随着x值的增大而增大,则点在第______象限.
【答案】一
19.(2021·上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.
【答案】
三、解答题
20.(2021.宿迁)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:
(1)快车的速度为 km/h,C点的坐标为 .
(2)慢车出发多少小时后,两车相距200km。
解:(1)根据图像,V快+V慢=480÷3=160 km/h,响彻相遇后快车发生故障,慢车继续行驶,快车故障时间为1小时,慢车行驶1小时,行驶距离为60km,所以快车的速度为160-60=100km/h。慢车行驶了4小时,已经行驶60×4=240km。到达甲地还需(480-240)÷60=4(h)快车到达乙地需要(480-100×3)÷100=1.8(h),所以快车先到到达。AB为快车行使函数,BC为慢车行驶函数C点(8,480)
(2)两车相距200km时,分为两种
1)两车还未相遇距离200km时,(480-200)÷160=1.75(h)
2)相遇以后相距200km时,(200-60)÷160=0.875(h),相遇后快车故障1小时,故总时间为3+1+0.875=4.875h。
21.(2021.丽水)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:
(1)直接写出工厂离目的地的路程;
(2)求s关于t的函数表达式;
(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?
解:(1)由图象,得时,,
答:工厂离目的地的路程为880千米.
(2)设,将和分别代入表达式,
得,解得,
∴s关于t的函数表达式为.
(3)当油箱中剩余油量为10升时,(千米),
,解得(小时).
当油箱中剩余油量为0升时,(千米),
,解得(小时).
随t的增大而减小,
的取值范围是.
22.(2021·资阳)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的,应如何购买才能使总费用最少?并求出最少费用.
解:(1)设甲种奖品的单价为x元,乙种奖品的单价为y元,
∵1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元,
∴,
解得:,
答:甲种奖品的单价为20元,乙种奖品的单价为10元.
(2)设总费用为w元,购买甲种奖品为m件,
∵需甲、乙两种奖品共60件,
∴购买乙种奖品为(60-m)件,
∵甲种奖品的单价为20元,乙种奖品的单价为10元,
∴w=20m+10(60-m)=10m+600,
∵甲种奖品的数量不少于乙种奖品数量的,
∴m≥(60-m),
∴20≤m≤60,
∵10>0,
∴w随m的增大而增大,
∴当m=20时,w有最小值,最小值为10×20+600=800(元),
∴购买甲种奖品20件,乙种奖品40件时总费用最少,最少费用为800元.
23.(2021·连云港)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.
(1)这两种消毒液的单价各是多少元?
(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.
解:(1)设种消毒液的单价是元,型消毒液的单价是元.
由题意得:,解之得,,
答:种消毒液的单价是7元,型消毒液的单价是9元.
(2)设购进种消毒液瓶,则购进种瓶,购买费用为元.
则,
∴随着的增大而减小,最大时,有最小值.
又,∴.
由于是整数,最大值为67,
即当时,最省钱,最少费用为元.
此时,.
最省钱的购买方案是购进种消毒液67瓶,购进种23瓶.
24.(2021·云南)某鲜花销售公司每月付给销售人员的工资有两种方案.
方案一:没有底薪,只付销售提成;
方案二:底薪加销售提成.
如图中的射线,射线分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资(单位:元)和(单位:元)与其当月鲜花销售量x(单位:千克)()的函数关系.
(1)分别求﹑与x的函数解析式(解析式也称表达式);
(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?
解:(1)根据图像,l1经过点(0,0)和点(40,1200),
设的解析式为,则,
解得:,
∴l1的解析式为,
设的解析式为,
由l2经过点(0,800),(40,1200),
则,解得:,
∴l2的解析式为;
(2)方案一:,即,
解得:;
方案二:,即,即,无解,
∴公司没有采用方案二,
∴公司采用了方案一付给这名销售人员3月份的工资.
25.(2021·陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离与时间之间的关系如图所示.
(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______;
(2)求的函数表达式;
(3)求“猫”从起点出发到返回至起点所用的时间.
解:(1)从图象可以看出“猫”追上“鼠”时,行驶距离为30米,“鼠”用时6min,“猫”用时(6-1)=5min,
所以,“猫”的平均速度与“鼠”的平均速度的差是
故答案为:1;
(2)由图象知,A(7,30),B(10,18)
设的表达式,
把点A、B代入解析式得,
解得,
∴.
(3)令,则.
∴.
14.5-1=13.5(min)
∴“猫”从起点出发到返回至起点所用的时间为.
26.(2021·衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为,单层部分的长度为.经测量,得到下表中数据.
双层部分长度 2 8 14 20
单层部分长度 148 136 124 112
(1)根据表中数据规律,求出y与x的函数关系式;
(2)按小文的身高和习惯,背带的长度调为时为最佳背带长.请计算此时双层部分的长度;
(3)设背带长度为,求L的取值范围.
解:(1)根据观察y与x是一次函数的关系,所以设
依题意,得
解得,;
∴y与x的函数关系式:
(2)设背带长度是

当时,
解得,;
(3)∵,∴
解得,又


即.
27.(2021·天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
已知学校、书店、陈列馆依次在同一条直线上,书店离学校,陈列馆离学校.李华从学校出发,匀速骑行到达书店;在书店停留后,匀速骑行到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离与离开学校的时间之间的对应关系.
请根据相关信息,解答下列问题:
(Ⅰ)填表
离开学校的时间/
离学校的距离/
(Ⅱ)填空:
①书店到陈列馆的距离为________;
②李华在陈列馆参观学的时间为_______h;
③李华从陈列馆回学校途中,减速前的骑行速度为______;
④当李华离学校的距离为时,他离开学校的时间为_______h.
(Ⅲ)当时,请直接写出y关于x的函数解析式.
解:对函数图象进行分析:
①当时,设函数关系式为,由图象可知,当x=0.6时,y=12,
则,解得
∴当时,设函数关系式为
②由图象可知,当时,
③当时,设函数关系式为,由图象可知,当x=1时,y=12;当x=1.5时,y=20,
则 ,解得
∴当时,设函数关系式为
④由图象可知,当时,
⑤当时,设函数关系式为,由图象可知,当x=4.5时,y=20;当x=5时,y=6,
则,解得
∴当时,设函数关系式为
⑥当时,设函数关系式为,由图象可知,当x=5时,y=6;当x=5.5时,y=0,
则,解得
∴当时,设函数关系式为
(Ⅰ)∵当时,函数关系式为
∴当x=0.5时,.故第一空为10.
当时,.故第二空为12.
当时,.故第二空为20.
(Ⅱ)①李华从学校出发,匀速骑行到达书店;在书店停留后,匀速骑行到达陈列馆.由图象可知书店到陈列馆的距离;
②李华在陈列馆参观学习一段时间然后回学校.由图象可知李华在陈列馆参观学的时间;
③当时,设函数关系式为,所以李华从陈列馆回学校途中,减速前的骑行速度为28;
④当李华离学校的距离为时,或
由上对图象的分析可知:
当时,设函数关系式为
令,解得
当时,设函数关系式为
令,解得
∴当李华离学校的距离为时,他离开学校的时间为或.
(Ⅲ)由上对图象的分析可知:
当时,;
当时,;
当时,.
【点睛】
本题考查函数的图象与实际问题.解题的关键在于读懂函数的图象,分段进行分析.
28.(2021·丽水)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:
(1)直接写出工厂离目的地的路程;
(2)求s关于t的函数表达式;
(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?
解:(1)由图象,得时,,
答:工厂离目的地的路程为880千米.
(2)设,将和分别代入表达式,
得,解得,
∴s关于t的函数表达式为.
(3)当油箱中剩余油量为10升时,(千米),
,解得(小时).
当油箱中剩余油量为0升时,(千米),
,解得(小时).
随t的增大而减小,
的取值范围是.
29.(2021·宁波)某通讯公司就手机流量套餐推出三种方案,如下表:
A方案 B方案 C方案
每月基本费用(元) 20 56 266
每月免费使用流量(兆) 1024 m 无限
超出后每兆收费(元) n n
A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.
(1)请直接写出m,n的值.
(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.
(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?
解:(1)

(2)设函数表达式为,
把,代入,得

解得,
∴y关于x的函数表达式.
(注:x的取值范围对考生不作要求)
(3)(兆).
由图象得,当每月使用的流量超过3772兆时,选择C方案最划算.