2021-2022学年人教版九年级上 25.3用频率估计概率同步练习(含解析)

文档属性

名称 2021-2022学年人教版九年级上 25.3用频率估计概率同步练习(含解析)
格式 zip
文件大小 1.1MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2021-12-13 09:40:56

图片预览

文档简介

中小学教育资源及组卷应用平台
人教版九年级上 25.3用频率估计概率同步练习
一.选择题
1.(2021秋 章丘区校级月考)在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是(  )
A.频率就是概率 B.频率与试验次数无关
C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同
D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近
2.(2021秋 鹿城区校级月考)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有9个,黑球有n个,若随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出黑球的频率稳定在0.4附近,则n的值为(  )
A.5 B.6 C.7 D.8
3.(2021秋 越城区期中)下列说法正确的是(  )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是
B.某种彩票中奖的概率是,那么买10000张这种彩票一定会中奖
C.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同
D.通过大量重复试验,可以用频率估计概率
4.(2021秋 揭阳期中)在抛掷一枚质地均匀的硬币的实验中,第100次抛掷时,反面朝上的概率是(  )
A. B. C. D.不确定
5.(2021秋 泰兴市月考)下列对于随机事件的概率的描述:
①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;
②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;
③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85.其中合理的有(  )
A.① B.②③ C.①③ D.①②③
6.(2021 河北一模)育种小组对某品种小麦发芽情况进行测试,在测试基本情况相同的条件下,得到如下数据:
抽查小麦粒数 100 500 1000 2000 3000 4000
发芽粒数 95 486 968 1940 2907 a
则a的值最有可能是(  )
A.3680 B.3720 C.3880 D.3960
7.(2020 霍林郭勒市模拟)动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是(  )
A. B. C. D.
8.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数有关;④在抛掷图钉的试验中针尖朝上的概率为,表示3次这样的试验必有1次针尖朝上.其中正确的是(  )
A.①② B.②③ C.①③ D.①④
9.(2021 邵阳县模拟)如图,显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有四个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③当投掷次数是5000时,“钉尖向上”的频率不一定是0.618;④若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是(  )
A.①② B.②③ C.③④ D.②④
二.填空题
10.(2021春 沭阳县期中)在“抛掷正方体骰子”的试验中,骰子的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是   .
11.(2021秋 太原期中)小麦是中国重要的粮食作物之一,传入中国的时间较早据考古发掘新疆孔雀河流域新石器时代遗址出土的炭化小麦,距今400年以上.今年某乡村振兴实验室,从某小麦新品种的种子中抽取6批,在相同条件下进行发芽实验,数据统计如表:
种子粒数 100 400 800 1000 2000 5000
发芽种子粒数 95 358 744 893 1804 4505
发芽频率 0.950 0.895 0.930 0.893 0.902 0.901
据此可知,该种子发芽的概率为    (精确到0.1).
12.(2021春 莱山区期末)如图是小明的健康绿码示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为    cm2.
13.(2021春 高邮市期末)在一个不透明的袋中装有若干个红球和5个黑球(每个球除颜色外其余都相同),摇匀后随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.8左右,估计袋中红球有    个.
14.(2021 宜昌)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是    .(填“黑球”或“白球”)
15.(2021 兴宁区校级一模)某鱼塘养了1000条鲤鱼、若干条草鱼和500条罗非鱼,该鱼塘主通过多捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为   .
三.解答题
16.(2021秋 盐湖区校级月考)有四张背面完全相同,正面涂有不同颜色的卡片,其中三张卡片的颜色分别是红色、绿色、黄色,第四张卡片的颜色未知.
(1)将这四张卡片背面朝上,洗匀,从中随机抽取一张,记录颜色,然后放回,大量重复实验,发现抽到红色卡片的频率稳定在,则第四张卡片的颜色为    .
(2)若第四张卡片的颜色为蓝色,将这四张卡片背面朝上,洗匀,从中随机抽取一张,记录颜色,不放回,再从剩余的三张卡片中随机抽取一张,请利用画树状图或列表的方法,求抽取的这两张卡片颜色能配成紫色的概率.(温馨提示:列表或画树状图时,红色用“R”,绿色用“G”,黄色用“Y”,蓝色用“B”表示,红色与蓝色能配成紫色)
17.(2021 长春模拟)某射击运动员在同一条件下的射击成绩记录如下:
射击次数 20 80 100 200 400 800 1000 1500
“射中九环以上”的频数 15 49 71 137 264 534 666 1001
“射中九环以上”的频率 0.750 0.613 0.710 0.685 0.660 0.668 0.666 0.667
(1)根据上表估计这名运动员射击一次时“射中九环以上”的概率约为    .(结果保留两位小数)
(2)小明想了解该运动员连续两次射击都“射中九环以上”的概率,他将这个问题进行了简化,制作了三张不透明卡片,其中两张卡片的正面写有“中”,第三张卡片的正面写有“未中”,卡片除正面文字不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录文字后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽取的卡片上都写有“中”的概率.
18.(2021春 无锡期中)一个不透明的口袋中放着若干个红球和黑球,这两种球除了颜色之外没有其他任何区别,袋中的球已经搅匀,闭眼从口袋中摸出一个球,经过很多次实验发现摸到红球的频率逐渐稳定在.
(1)估计摸到黑球的概率是   ;
(2)如果袋中原有红球12个,又放入n个黑球,再经过很多次实验发现摸到黑球的频率逐渐稳定在,求n的值.
19.(2020 晋安区一模)一个盒子里有标号分别为1,2,3的三个小球,这些小球除标号数字外都相同,每次摸出一个小球,然后放回充分摇匀后再摸,在实验中得到下表中部分数据:
试验次数 20 40 60 80 100 120 150
出现1号小球的频率 0.35 0.325 0.35 0.338 0.34 0.325 0.327
(1)从上表中可以估计摸到“1号小球”发生的概率是   (精确到0.01)
(2)甲、乙两人用这三个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.
20.(2021 竞秀区一模)嘉嘉和琪琪玩摸球游戏,有5个完全相同的小球,嘉嘉拿了3个,在上面分别标上数字2,3,4;琪琪拿了2个,也标上数字.他们将小球放入同一个不透明的口袋中,并搅拌均匀.琪琪说:“我标的数字是从3,4这两个数字中选择的(可重复)”.二人经过多次摸球试验,发现摸到的小球上的数字为3的频率稳定于0.4.
(1)这5个小球上的数字的众数为    .
(2)琪琪将口袋中的小球搅匀后,从中摸出一个小球,她说:“摸出这个小球后,剩余的小球上所标数字的中位数没有变化,”
①琪琪摸出的小球上所标数字为    .
②嘉嘉先从剩余的小球中摸出一个,放回,搅拌均匀又摸出一个,用列表或画树状图的方法求嘉嘉两次摸到的小球上的数字都是偶数的概率.
21.(2021春 玄武区校级期中)随着通讯技术迅猛发展,人与人之间的沟通方式更多样,更便捷.为此,老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种).某校八年级(1)班同学利用课余时间对全校师生进行了抽样调查,并将统计结果绘制成如图所示两幅不完整的统计图:
请结合图中所给的信息解答下列问题:
(1)这次参与调查的共有    人,在扇形统计图中,表示“微信”的扇形圆心角的度数为    ;
(2)将条形统计图补充完整;
(3)如果该校有3600人在使用手机:
①请估计该校最喜欢用“微信”进行沟通的人数;
②在该校师生中随机抽取一人,用频率估计概率,抽取的恰好使用“QQ”的概率是    .
答案与解析
一.选择题
1.(2021秋 章丘区校级月考)在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是(  )
A.频率就是概率 B.频率与试验次数无关
C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同
D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近
【解析】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,
∴D选项说法正确.
故选:D.
2.(2021秋 鹿城区校级月考)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有9个,黑球有n个,若随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出黑球的频率稳定在0.4附近,则n的值为(  )
A.5 B.6 C.7 D.8
【解析】解:根据题意得:
=0.4,
解得:n=6,
经检验:n=6是分式方程的解且符合题意,
故选:B.
3.(2021秋 越城区期中)下列说法正确的是(  )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是
B.某种彩票中奖的概率是,那么买10000张这种彩票一定会中奖
C.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同
D.通过大量重复试验,可以用频率估计概率
【解析】解:A.掷一枚质地均匀的骰子,掷得的点数为3的概率是,此选项错误,不符合题意;
B.某种彩票中奖的概率是,那么买10000张这种彩票不一定会中奖,原命题说法是错误的,此选项不符合题意;
C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;
D.通过大量重复试验,可以用频率估计概率,此选项符合题意;
故选:D.
4.(2021秋 揭阳期中)在抛掷一枚质地均匀的硬币的实验中,第100次抛掷时,反面朝上的概率是(  )
A. B. C. D.不确定
【解析】解:∵抛掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,
∴第100次再抛这枚硬币时,反面向上的概率还是:.
故选:B.
5.(2021秋 泰兴市月考)下列对于随机事件的概率的描述:
①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;
②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;
③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85.其中合理的有(  )
A.① B.②③ C.①③ D.①②③
【解析】解:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,大约有50次“正面朝上”,此结论错误;
②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是=0.2,此结论正确;
③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,此结论正确;
其中合理的有②③;
故选:B.
6.(2021 河北一模)育种小组对某品种小麦发芽情况进行测试,在测试基本情况相同的条件下,得到如下数据:
抽查小麦粒数 100 500 1000 2000 3000 4000
发芽粒数 95 486 968 1940 2907 a
则a的值最有可能是(  )
A.3680 B.3720 C.3880 D.3960
【解析】解:∵95÷100=0.95,486÷500=0.972,968÷1000=0.968,1940÷2000=0.97,2907÷3000=0.969,
∴可估计某品种小麦发芽情况的概率为0.97,
而3680÷4000=0.92,3720÷4000=0.93,3880÷4000=0.97,3960÷4000=0.99.
故选:C.
7.(2020 霍林郭勒市模拟)动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是(  )
A. B. C. D.
【解析】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.5x,活到30岁的只数为0.3x,
故现年20岁的这种动物活到30岁的概率为=.
故选:B.
8.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数有关;④在抛掷图钉的试验中针尖朝上的概率为,表示3次这样的试验必有1次针尖朝上.其中正确的是(  )
A.①② B.②③ C.①③ D.①④
【解析】解:①不可能事件发生的概率为0,但是概率为0的事件不一定是不可能事件,还有可能是检测的手段问题,不能说明该事件是不可能事件,这个和测度论有关,
所以①正确;
②试验次数越多,某情况发生的频率越接近概率,正确;
③事件发生的概率与实验次数有关,错误;
④在抛掷图钉的试验中针尖朝上的概率为,是偶然事件,不一定3次这样的试验必有1次针尖朝上,故本选项错误;
故选:A.
9.(2021 邵阳县模拟)如图,显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有四个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③当投掷次数是5000时,“钉尖向上”的频率不一定是0.618;④若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是(  )
A.①② B.②③ C.③④ D.②④
【解析】解:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以此时“钉尖向上”的频率是:308÷500=0.616,但“钉尖向上”的概率不一定是0.616,故①错误,不符合题意,
随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故②正确,符合题意,
③当投掷次数是5000时,“钉尖向上”的频率不一定是0.618,正确,符合题意,
若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上”的概率可能是0.620,但不一定是0.620,故④错误,不符合题意.
合理的有②③
故选:B.
二.填空题
10.(2021春 沭阳县期中)在“抛掷正方体骰子”的试验中,骰子的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是  .
【解析】解:如果试验的次数增多,出现数字“6”的频率的变化趋势是接近.
故答案为:.
11.(2021秋 太原期中)小麦是中国重要的粮食作物之一,传入中国的时间较早据考古发掘新疆孔雀河流域新石器时代遗址出土的炭化小麦,距今400年以上.今年某乡村振兴实验室,从某小麦新品种的种子中抽取6批,在相同条件下进行发芽实验,数据统计如表:
种子粒数 100 400 800 1000 2000 5000
发芽种子粒数 95 358 744 893 1804 4505
发芽频率 0.950 0.895 0.930 0.893 0.902 0.901
据此可知,该种子发芽的概率为  0.9 (精确到0.1).
【解析】解:∵观察表格,发现大量重复试验发芽的频率逐渐稳定在0.9左右,
∴该小麦种子发芽的概率为0.9,
故答案为:0.9.
12.(2021春 莱山区期末)如图是小明的健康绿码示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为  2.4 cm2.
【解析】解:∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,
∴点落入黑色部分的概率为0.6,
∵边长为2cm的正方形的面积为4cm2,
设黑色部分的面积为S,
则=0.6,
解得S=2.4(cm2).
∴估计黑色部分的总面积约为2.4cm2.
故答案为:2.4.
13.(2021春 高邮市期末)在一个不透明的袋中装有若干个红球和5个黑球(每个球除颜色外其余都相同),摇匀后随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.8左右,估计袋中红球有  20 个.
【解析】解:∵通过大量重复摸球试验后发现,摸到红球的频率稳定在0.8左右,
∴从袋子中任意摸出1个球,是红球的概率约为0.8,
设袋中红球有x个,
根据题意,得:=0.8,
解得x=20,
经检验:x=20是分式方程的解,
∴估计袋中红球有20个,
故答案为:20.
14.(2021 宜昌)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是  白球 .(填“黑球”或“白球”)
【解析】解:由图可知,摸出黑球的概率约为0.2,
∴摸出白球的概率约为0.8,
∴白球的个数比较多,
故答案为白球.
15.(2021 兴宁区校级一模)某鱼塘养了1000条鲤鱼、若干条草鱼和500条罗非鱼,该鱼塘主通过多捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为  .
【解析】解:∵捕捞到草鱼的频率稳定在0.5左右,
设草鱼的条数为x,可得:=0.5;
解得:x=1500,
∴由题意可得,捞到鲤鱼的概率为=,
故答案为:.
三.解答题
16.(2021秋 盐湖区校级月考)有四张背面完全相同,正面涂有不同颜色的卡片,其中三张卡片的颜色分别是红色、绿色、黄色,第四张卡片的颜色未知.
(1)将这四张卡片背面朝上,洗匀,从中随机抽取一张,记录颜色,然后放回,大量重复实验,发现抽到红色卡片的频率稳定在,则第四张卡片的颜色为  红色 .
(2)若第四张卡片的颜色为蓝色,将这四张卡片背面朝上,洗匀,从中随机抽取一张,记录颜色,不放回,再从剩余的三张卡片中随机抽取一张,请利用画树状图或列表的方法,求抽取的这两张卡片颜色能配成紫色的概率.(温馨提示:列表或画树状图时,红色用“R”,绿色用“G”,黄色用“Y”,蓝色用“B”表示,红色与蓝色能配成紫色)
【解析】解:(1)根据题意,从四张卡片中抽到红色卡片的概率为,
所以红色卡片的数量为4×=2,
∴第四张卡片是红色的,
故答案为:红色;
(2)列表如下:
R G Y B
R (G,R) (Y,R) (B,R)
G (R,G) (Y,G) (B,G)
Y (R,Y) (G,Y) (B,Y)
B (R,B) (G,B) (Y,B)
由表可知,共有12种等可能结果,其中能配成紫色的有2种结果,
∴能配成紫色概率为=.
17.(2021 长春模拟)某射击运动员在同一条件下的射击成绩记录如下:
射击次数 20 80 100 200 400 800 1000 1500
“射中九环以上”的频数 15 49 71 137 264 534 666 1001
“射中九环以上”的频率 0.750 0.613 0.710 0.685 0.660 0.668 0.666 0.667
(1)根据上表估计这名运动员射击一次时“射中九环以上”的概率约为  0.67 .(结果保留两位小数)
(2)小明想了解该运动员连续两次射击都“射中九环以上”的概率,他将这个问题进行了简化,制作了三张不透明卡片,其中两张卡片的正面写有“中”,第三张卡片的正面写有“未中”,卡片除正面文字不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录文字后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽取的卡片上都写有“中”的概率.
【解析】解:(1)∵从频率的波动情况可以发现频率稳定在0.67附近,
∴这名运动员射击一次时“射中九环以上”的概率约为0.67.
故答案为:0.67;
(2)根据题意列表如下:
共有9种等可能的情况数,其中两次抽取的卡片上都写有“中”的有4种,
则两次抽取的卡片上都写有“中”的概率是.
18.(2021春 无锡期中)一个不透明的口袋中放着若干个红球和黑球,这两种球除了颜色之外没有其他任何区别,袋中的球已经搅匀,闭眼从口袋中摸出一个球,经过很多次实验发现摸到红球的频率逐渐稳定在.
(1)估计摸到黑球的概率是  ;
(2)如果袋中原有红球12个,又放入n个黑球,再经过很多次实验发现摸到黑球的频率逐渐稳定在,求n的值.
【解析】解:(1)P(取出黑球)=1﹣P(取出红球)=1﹣=;
故答案为:;
(2)设袋子中原有黑球x个,
根据题意得:=,
解得:x=18,
经检验x=18是原方程的根,
所以黑球有18个,
∵又放入了n个黑球,
根据题意得:=,
解得:n=6.
19.(2020 晋安区一模)一个盒子里有标号分别为1,2,3的三个小球,这些小球除标号数字外都相同,每次摸出一个小球,然后放回充分摇匀后再摸,在实验中得到下表中部分数据:
试验次数 20 40 60 80 100 120 150
出现1号小球的频率 0.35 0.325 0.35 0.338 0.34 0.325 0.327
(1)从上表中可以估计摸到“1号小球”发生的概率是 0.33 (精确到0.01)
(2)甲、乙两人用这三个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.
【解析】解:(1)∵大量重复试验事件发生的频率逐渐稳定到0.33附近,
∴估计摸到“1号小球”发生的概率是0.33;
(2)列表如下:
1 2 3
1 (1,1) (2,1) (3,1)
2 (1,2) (2,2) (3,2)
3 (1,3) (2,3) (3,3)
共有9种等可能的情况,两次摸到小球的标号数字同为奇数或同为偶数的有5种,两次摸到小球的标号数字为一奇一偶有4种,
∴P(甲)=,P(乙)=,
∵<,
∴这个游戏对甲、乙两人是不公平的.
20.(2021 竞秀区一模)嘉嘉和琪琪玩摸球游戏,有5个完全相同的小球,嘉嘉拿了3个,在上面分别标上数字2,3,4;琪琪拿了2个,也标上数字.他们将小球放入同一个不透明的口袋中,并搅拌均匀.琪琪说:“我标的数字是从3,4这两个数字中选择的(可重复)”.二人经过多次摸球试验,发现摸到的小球上的数字为3的频率稳定于0.4.
(1)这5个小球上的数字的众数为  3、4 .
(2)琪琪将口袋中的小球搅匀后,从中摸出一个小球,她说:“摸出这个小球后,剩余的小球上所标数字的中位数没有变化,”
①琪琪摸出的小球上所标数字为  4 .
②嘉嘉先从剩余的小球中摸出一个,放回,搅拌均匀又摸出一个,用列表或画树状图的方法求嘉嘉两次摸到的小球上的数字都是偶数的概率.
【解析】解:(1)∵一共有5个小球,经过多次摸球试验,发现摸到的小球上的数字为3的频率稳定于0.4,
∴标有数字3的小球的个数为5×0.4=2,
则琪琪标注的两个数字分别为3、4,
∴这5个小球标注的数字分别为2、3、3、4、4,
∴这5个小球上的数字的众数为3和4,
故答案为:3、4;
(2)①∵琪琪将口袋中的小球搅匀后,从中摸出一个小球,她说:“摸出这个小球后,剩余的小球上所标数字的中位数没有变化”,
∴琪琪摸出的小球上所标数字为4;
②列表如下:
2 3 3 4
2 (2,2) (3,2) (3,2) (4,2)
3 (2,3) (3,3) (3,3) (4,3)
3 (2,3) (3,3) (3,3) (4,3)
4 (2,4) (3,4) (3,4) (4,4)
由表可知,共有16种等可能结果,其中嘉嘉两次摸到的小球上的数字都是偶数的有4种,
所以嘉嘉两次摸到的小球上的数字都是偶数的概率为=.
21.(2021春 玄武区校级期中)随着通讯技术迅猛发展,人与人之间的沟通方式更多样,更便捷.为此,老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种).某校八年级(1)班同学利用课余时间对全校师生进行了抽样调查,并将统计结果绘制成如图所示两幅不完整的统计图:
请结合图中所给的信息解答下列问题:
(1)这次参与调查的共有  2000 人,在扇形统计图中,表示“微信”的扇形圆心角的度数为  144° ;
(2)将条形统计图补充完整;
(3)如果该校有3600人在使用手机:
①请估计该校最喜欢用“微信”进行沟通的人数;
②在该校师生中随机抽取一人,用频率估计概率,抽取的恰好使用“QQ”的概率是   .
【解析】解:(1)∵喜欢用电话沟通的人数为400,所占百分比为20%,
∴此次共抽查了400÷20%=2000(人),
表示“微信”的扇形圆心角的度数为:360°×=144°,
故答案为:2000;144;
(2)短信人数为2000×5%=100(人),微信人数为2000﹣(400+440+260+100)=800(人),
如图:
(3)①由(2)知:参与调查的人中喜欢用“微信”进行沟通的人数有800人,
估计最喜欢用“微信”进行沟通的人数有3600×=1440(人),
∴在该校3600人中,估计最喜欢用“微信”进行沟通的有1440人;
②由(1)可知:参与这次调查的共有2000人,其中喜欢用“QQ”进行沟通的人数为440人,
所以,在参与这次调查的人中随机抽取一人,抽取的恰好使用“QQ”的频率是=.
所以,用频率估计概率,在该校使用手机的人中随机抽取一人,抽取的恰好使用“QQ”的概率是,
故答案为:.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)