4.4 角(第一课时:角的概念及表示方法)
教学目标 1、通过丰富的实例,帮助学生理解角的形成,建立几何中角的概念,掌握角的两种定义形式和四种表示方法.2、通过在图片、实例中找角,培养学生的观察、探究、抽象、概括的能力以及把实际问题转化为数学问题的能力。3、通过实际操作,体会角在实际生活中的应用,培养学生积极参与数学学习活动的热情和对数学的好奇心与求知欲。
教学重点 角的概念与角的表示方法。
知识难点 正确理解角的概念。
教学准备 教师准备:圆规、量角器、三角尺、时钟、红领巾、中国地图、多媒体课件.学生准备:圆规、量角器、三角尺.
教学过程(师生活动) 设计理念
提出问题 展示实物(如时钟、红领巾等),播放多媒体课件.1、观察实物与图片,你发现其中有什么相同图形吗?2、你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?3、从黑板上这些不同的图形中,你能归纳出它们的共同特点吗? 挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角. 培养学生的动手能力. 引导学生观察并归纳角的共同点
探究新知 (一)角的概念1、在学生充分发表自己对角的认识的基础上,师生共同归纳得出:有公共端点的两条射线组成的图形叫做角.这个公共端点是角的顶点,这两条射线是角的两条边.2、下面的三个图形是角吗?3、小组交流:说说生活中的角。 分组活动.先独立思考,然后小组内互相交流并做记录,最、后各组选派代表发言. (二)角的表示 在刚才的讨论中,我们发现了生活中有许多角的形象.那么,我们如何给这些角取名呢?1、角通常用三个大写字母及符号“∠”表示.三个大写字母应分别写在顶点和两边上的任意点,顶点的字母必须写在中间.如∠AOB,“O”表示顶点,"A、B"表示两边上的任意点.2、角也可用一个大写字母表示.这个字母应写在顶点上.但当两个或两个以上的角有同一个顶点时,不能用一个大写字母表示.3、角还可用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线,写上数字或希腊字母. (三)用旋转观点定义角1、播放录像:一艘轮船正在大海上打开探照灯寻找目标;2、多媒体演示:一只挂钟的钟摆不停地摆动. 思考:在观看过程中,有以新的方式出现的角吗? 在讨论的基础上,归纳:角也可以看成是由一条射线绕着它的端点旋转而形成的图形. 继续演示:当射线OA绕点O旋转时,当终止位置OB和起始位置〔OA成一条线时,会形成什么角?继续旋转,当OB和OA重合时,又形成什么角? 在识别角的过程中加深对角的概念的理解。培养学生主动参与合作交流的意识,提高观察、分析、概括和抽象的能力。初步了解角的表示方法。演示探照灯或钟摆的旋转,逐步抽象出一条射线绕O点旋转.然后在学生已有认识的基础上,归纳出角的第二种定义. 动画演示既可让学生看到平角与周角(已学过)的形成过程,又加深了对角的旋转定义的理解.
巩固新知 把图中的角表示成下列形式,哪些正确,哪些不正确?(1)∠APO (2)∠AOP (3)OPC (4)∠OCP(5)∠O (6) ∠P图中以O点为顶点的角有几个?以D点为顶点的角有几个?试用适当的方法来表示这些角。 巩固对角表示方法的认识。
解决问题 下面为中国地图的简图用字母表示图中的每个城市。请用字母分别表示以北京为中心的每两个城市之间的夹角。请用量角器测量出上述夹角的度数,与同伴交流的量法和读法。 以地图上城市之间的夹角为背景,复习角的度数,巩固角的符号表示。
总结归纳 角的两种定义。平角、周角的概念角的四种表示方法。 通过总结归纳,完善学生的已有知识结构
布置作业 必做题:教科书第132页习题3.3第1、2、3题。选做题:第133页习题3.3第7题。备选题:(1)下列说法错误的是( ) A.平角的一半是直角B.平角的两倍是周角 C.锐角的两倍是钝角D.钝角的一半是锐角(2)下列说法正确的是 A.两条角边在同一条直线上的角是周角 B.五角星图形中有五个角 C. 18时整,时针和分针成一个平角 D.长方体表面上只有四个角(3)画射线OA,OB;在LAOB的内部和外部分别画射线OC, OD.那么所画的图中有哪几个角?请用适当的方法表示这些角.(4)解下列关于钟表上时针与分针所成角的问题. ①上午8时整,时针与分针成几度角? ②上午7时55分,时针与分针所成的角是等于1200,大于1200,还是小于1200 ③一天中有多少次时针与分针成直角?
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本课设计旨在遵循从具体到抽象,从感性到理性的渐进认识规律,以启发探究式教学为主导,不断创设丰富而贴近学生生活现实的情景,引导学生探究新知.在教学活动中,教师应发扬教学民主,成为学生数学活动的组织者、引导者和合作者,并以多媒体为教学辅助手段,以一个个优美的动画画面吸引住学生的注意力,引导学生在活动中观察、了解角的特征,启发学生用比较直观的语言来刻画概念的形成过程,使知识的形成过程转化为学生观察、发现、探索和运用的过程,充分体现“数学教学主要是数学活动的教学”这一教育思想.通过实际问题的解决,体验数学与日常生活的密切关系,让学生认识到生活中处处有数学,以此激发学生的好奇心和主动学习的欲望,培养学生观察、探究、抽象、概括的能力和把实际问题转化为数学问题的能力.
第 6 页 共 7 页