北京课改版数学八年级上册13.3
《求简单随机事件发生的可能性的大小》课时练习
一、选择题
1.一个箱子内装有3张分别标示4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出的第1张牌的号码为十位数字,第2张牌的号码为个位数字,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率是( ).
A. B. C. D.
2.不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. B. C. D.
3.在一个不透明的袋子中有1个红球和1个白球,这些球除颜色外都相同,现从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,则两次摸到不同颜色的球的概率是( )
A.0.5 B. C.0.25 D.0.75
4.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( )
A. B. C. D.
5.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“967”就是一个“V数”.若十位上的数字为4,则从3,5,7,9中任选两数,能与4组成“V数”的概率是( )
A. B. C. D.
6.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( )
A. B. C. D.
7.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( )
A. B. C. D.
8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A. B. C. D.
二、填空题
9.如图所示,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率是 .
10.在不透明的甲、乙两个盒子中装有除颜色外完全相同的小球,甲盒中有2个白球、1个黄球,乙盒中有1个白球、1个黄球,分别从每个盒中随机摸出1个球,则摸出的2个球都是黄球的概率是 .
11.甲、乙、丙三名学生各自随机选择到A、B两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为 .
12.甲、乙两人进行乒乓球比赛,比赛规则为3局2胜制.如果两人在每局比赛中获胜的机会均等,且比赛开始后,甲先胜了第1局,那么最后甲获胜的概率是 .
13.一个不透明的袋子中装有仅颜色不同的3个红球和2个白球,从中随机摸出1个球不放回,再随机摸出1个球,则摸到的2个球颜色相同的概率为 .
14.现将5张完全相同的卡片分给甲3张,正面分别写上数字1,2,3;分给乙2张,正面分别写上数字4,5.两人分别从自己的卡片中随机抽取一张,则抽取的两张卡片上的数字和为6的概率为 .
三、解答题
15.家在上海的小明一家将于5月1-2日进行自驾游,准备两天分别在不同的城市游玩,5月1日的备选地点为:A南京、B杭州、C扬州,5月2日的备选地点为:D嘉兴、E苏州.
(1)请用树状图或列表法分析并写出小明一家所有可能的游玩方式(用字母表示即可).
(2)求小明一家恰好两天在同一省份游玩的概率.
16.在一个不透明的袋子中装有三张分别标有1、2、3数字的卡片(卡片除数字外完全相同).
(1)从袋中任意抽取一张卡片,则抽出的是偶数的概率为 ;
(2)从袋中任意抽取二张卡片,求被抽取的两张卡片构成两位数是奇数的概率.
17.一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.
(1)从箱子中任意摸出一个球是白球的概率是多少?
(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.
18.如图,有三张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录数字后放回,重新洗匀后再从中随机抽取一张,记录数字.试用列表或画树状图的方法,求抽出的两张卡片上的数字都是正数的概率.
19.如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:
(1)求前8次的指针所指数字的平均数.
(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)
参考答案
1.A.
2.B.
3.A
4.A
5.D
6.C
7.A
8.B.
9.答案为:.
10.答案为:.
11.答案为:.
12.答案为:0.75.
13.答案为:0.4.
14.答案为:1/3.
15.解:画树状图如下:
∴小明一家所有可能选择游玩的方式有:
(A,D),(A,E),(B,D),(B,E),(C,D),(C,E).
(2)小明一家恰好在同一省份游玩的可能有(A,E),(B,D),(C,E)三种,
∴小明一家恰好在同一省份游玩的概率为=.
16.解:(1)随机地抽取一张,所有可能出现的结果有3个,每个结果发生的可能性都相等,其中卡片上的数字为偶数的结果有1个.
故从袋中任意抽取一张卡片,则抽出的是偶数的概率为:;故答案为:;
(2)解法三:树状图法
由树状图可知,构成的两位数共有6个,分别是:12,13,21,23,31,32,
其中是奇数的为:13,21,23,31共4个,∴P(奇数)==.
17.解:(1)从箱子中任意摸出一个球是白球的概率是;
(2)记两个白球分别为白1与白2,画树状图如右所示:
从树状图可看出:事件发生的所有可能的结果总数为6,
两次摸出球的都是白球的结果总数为2,
因此其概率.
18.解:列表(略).
由表可知,共有9种情况,每种情况发生的可能性相同,两张卡片都是正数的情况出现了4次.因此,两张卡片上的数都是正数的概率.
19.解:(1)前8次的指针所指数字的平均数为×(3+5+2+3+3+4+3+5)=3.5;
(2)∵这10次的指针所指数字的平均数不小于3.3,且不大于3.5,
∴后两次指正所指数字和要满足不小于5且不大于7,
画树状图如下:
由树状图知共有12种等可能结果,其中符合条件的有8种结果,
所以此结果的概率为=.
-3
1
正
面
背
面
2