湖南省衡阳市第一高级中学校2021-2022学年高一上学期期中考试数学试卷(PDF版含答案)

文档属性

名称 湖南省衡阳市第一高级中学校2021-2022学年高一上学期期中考试数学试卷(PDF版含答案)
格式 pdf
文件大小 2.3MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2021-12-14 14:56:09

图片预览

文档简介

数学试卷
注意事项:本试卷满分为 150 分,时量为 120 分钟
一、选择题:本题共 8 小题,每小题 5 分,共 40 分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 M={1,2,3,4},集合 N={2,3,4,5},则 M ∩ N的子集个数为( )
A.6 B.7 C.8 D.9
2. 下列命题是真命题的是( )
A. 若 , ∈ ,且 + > 2,则 , 至少有 1个大于 1
B. ∈ ,2 < 2
C. + = 0 的充要条件是 = 1

D. 若“ ∈ , 2 + 1 < 0”的否定是“ ∈ , 2 + 1 > 0”
3. 下列函数为奇函数且在(0,+∞)上单调递增的是( )
A. 2 1 1 ( ) = 3 B. ( ) = + 3 C. ( ) = + D. ( ) = 2 2
4.设 > 0,且 1 < < ( )
A.0 < < < 1 B.0 < < < 1 C.1< < D.1 < <
5.已知函数 f (x) 2x2 kx 8在[-2,1]上具有单调性,则实数 的取值范围是( )
A. ≤ 8 B. ≥ 4 C. 8 ≤ ≤ 4 D. ≤ 8或 ≥ 4
≠ 0 = 2 + ( < 1)6.已知实数, 函数 2 ( ≥ 1),若 1 = 1 + ,则 的值为()
A 1 1 C 3 3.
6 B.- . D.6 4 4
7.如图(1)是反映某条公交线路收支差额(即营运所得票价收入与付出成本的差) y与乘客量 x之间关系的图象.由
于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.
则下列说法中,正确的是
A.图(2)的建议是:提高成本,并保持票价不变
B.图(2)的建议是:提高成本,并提高票价
C.图(3)的建议是:提高票价,并保持成本不变
D.图(3)的建议是:提高票价,并降低成本
0 < < 1 18.已知 ,则 + 2 的最小值为.()
2 1
9
A 5.9 B. C.5 D.2 2
`
二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分,在每小题给出的选项中,有多项符合题目要求.全部选对
的得 5 分,有选错的得 0 分,部分选对的得 3 分。
9.若函数 ( )是定义在 R上的奇函数,则下列结论正确的是( )
A. (0) = 0
B.若 ( )在[0, + ∞)上有最小值 1,则 ( )在( ∞,0]上有最大值 1
C.若 ( )在[1,+∞)上单调递增,则 ( )在( ∞, 1]上单调递减
D.若函数 ( ) = [ ( )]2 + | ( )|,则 ( )为偶函数
10.给出下面四个推断,其中正确的是( )
A.若 < 0,且 < 0 1,则 + ≥ 2 B.若 , b ∈ R,且 + = 1,则 ≤ 4
C.若 > 1, 1则 + ≥ 3 D.若 , b ∈ R+,则
2+ 2
1 ≤
+
2 2
1 为有理数
11.德国数学家狄利克雷在数学领域成就显著,以其命名的函数 ( ) = ,称为狄利克雷函数,则关
0 为无理数
于函数 f(x)有( )
A.函数 y=f(x)的图像是两条直线
B. [ ( )] = 1
C. ( 3) > (1)
D. ∈ ,都有 (1 ) = (2 + )

12.已知函数 ( ) = 2 1 ,则下列说法正确的是为( )2 +1
A. ( )的图像关于原点对称
B. ( ) ( ) = 0
C. ( )的值域为( 1,1)
( ) ( )
D. 1, 2 ∈ ,且 1 ≠
1 2
2,则 < 0 恒成立1 2
三、填空题:本题共 4 小题,每小题 5 分,共 20 分。
5
13.计算: + 2 2 ( 1 ) 1 + 20 =__________.
2 2
14. ( ) = 5 + 3 + 2,且 ( 5) = 16,则 (5) =__________.
( ) 0 + ∞ (1) = 0, ( )+ ( )15.若函数 为偶函数且在( , )上单调递减,又 则 < 0的解集为_________.2
2
16.设函数 ( ) = 1 | |+2 2,若 ( ) ≥ ( 2 + 4)恒成立,则实数 的取值范围是_________.1+
四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤。
1
17.(本小题满分 10 分)设全集 U=R,已知集合 = { |2 ≤ 2 ≤ 8}. = { | = } 2 .
(1)求 ∪ ,( ) ∩ .
(2)已知非空集合 = { |1 < < },且 C ∩ A = C,求实数 的取值范围.
18.(本小题满分 12分)已知函数 ( ) = 2 + 1, ∈
(1)求使 f( ) < 0时 x的取值集合.
(2)命题 p:“对 ∈ [2,3],都有 ( ) ≤ 0”,若命题 p为真命题,求实数 a的取值范围
19.(本小题满分 12 分)已知幂函数 ( ) = 2 2+ +3( ∈ )是偶函数,且 (1) < (2).
(1)求 ( )的表达式
(2)若函数 ( ) = ( ) + ( ) 在[1,2]与 轴有交点,求实数 的取值范围.
20.(本小题满分 12 分)已知函数 ( ) = + (其中 > 0 且 ≠ 1),其中 , 为实数.
(1)若函数 ( )的图像过点 A(0,2),B(1,3).求 ( ) = (2 ) ( )的值域;
(2)若函数 ( )的定义域和值域都是[0,1],求 + 的值
21.(本小题满分 12 分)十九大指出中国的电动车汽车革命早已展开,通过以新能源汽车替代汽油车、柴油车,
中国正在大力实施一项重塑全球汽车行业的计划,目前各种新能源电动汽车已进入各大车行.2021 年某企业计划引
进新能源汽车生产设备,通过市场分析,全年需投入固定成本 2500 万元,每生产 x(百辆),需另投入成本 C(x)
10 2 + 100 , 0 < < 40
万元,且 ( ) = 501 + 10000 4500, ≥ 40.

由市场调研知,每辆车售价 5万元,且全年内生产的车辆当年能全部销售完.
(1)求出 2021 年的利润 L(x)(万元)关于年产量 x(百辆)的函数关系式;(利润=销售额-成本)
(2)2021 年产量为多少百辆时,企业所获利润最大?并求出最大利润.
x x
22.(本小题满分 12 分)定义函数 fa x 4 a 1 2 a,其中 x为自变量, a为常数.
(Ⅰ)若函数 fa x 在区间 0,2 上的最小值为 1,求 a的值;
(Ⅱ)集合 A x f3 x fa 0 , B x f a x f a 2 x f 2 2 ,且 RA B ,求 a的取值范围.
数学试卷答案
1 2 3 4 5 6 7 8 9 10 11 12
C A B D D A C B ABD ABC BD AC
13.0 14. 12 15. ( 1,0) ∪ (1, + ∞) 16.[-4,4]
17.解:(1)A = [1,3],B = (2, + ∞),CUB = ( ∞, 2]···································3分
A ∪ B = [1, + ∞),(CUB) ∩ A = [1,2] ·················································5分
(2)∵C∩A=A
∴C为 A > 1的子集,故 ≤ 3 解得 ∈ (1,3] ············································10分
18.解:(1) ( ) = ( 1)( ( 1)) < 0
①当 = 2时,( 1)( 1) < 0 解为 ············································2分
②当 > 2时,( 1)( ( 1)) < 0 解得 ∈ (1, 1)································4分
③当 < 2时,( 1)( ( 1)) < 0 解得 ∈ ( 1,1)································6分
(2) ≤ 0
2 3 ≤ 0( )若命题 p为真命题,则有 (3) ≤ 0 即 8 2 ≤ 0··································9分
解得 ∈ [4, + ∞)··································································12分
19.解:(1)对幂函数 ( ),有 (1) < (2)
故 ( )在(0, + ∞)单调递增,所以 2 2 + + 3 > 0·····································2分
3
解得 ∈ ( 1, ),所以 = 0或 1···················································4分
2
当 = 0时, ( ) = 3,此时 ( )为奇函数,舍去.······································5分
当 = 0时, ( ) = 2,此时 ( )为偶函数,满足题意.
故 ( ) = 2········································································6分
(2) ( ) = 2 + | | ,问题转化为 ( ) = 0在 ∈ [1,2]有解
故 2 + | | = 在 ∈ [1,2]有解.·······················································7分
另 ( ) = 2 + | |
所以 ∈ ( )在[1,2]的值域,即求 ( )在[1,2]的值域····································8分
( ) = 2 + = ( + 1 )2 1························································9分
2 4
当 = 1时,有最小值 2;当 = 2 时,有最大值 6·····································11分
所以 ( ) ∈ [2,6],即 ∈ [2,6]·······················································12分
20.解:(1)∵y = f(x)的图像经过点 A(0,2),B(1,3).
2 = + 1
∴ 3 = + 解得 = 2, = 1······················································2分
故 ( ) = 2 + 1
即 ( ) = (2 ) ( ) = 22 2 ····················································3分
即 ( ) = (2 1 )2 1 ·····························································4分
2 4
所以 ( ) ∈ [ 1 , + ∞) ·····························································6分
4
(2)①当 > 1时, ( )在[0,1]上单调递增············································7分
(0) = 0 1 + = 0
∴ (1) = 1 即 + = 1 解得 = 2, = 1·········································9分
∴ + = 1·······································································10分
②当 0 < < 1时, ( )在[0,1]上单调递减
(0) = 1 1 + = 1
∴ (1) = 0 即 + = 0 解得 = 0, = 0 (舍去)··································12分
综上 + = 1
21.解:(1)①当 0 < < 40时, ( ) = 500 10 2 100 2500 = 10 2 + 400 2500·2分
②当 ≥ 40时, ( ) = 500 501 10000 + 4500 2500 = 2000 + ( 10000 )··········4分

10 2 + 400 2500 ( ∈ (0,40))
∴ ( ) =
2000 ( + 10000 ) ( ∈ [40, + ∞))
···········································5分

(2)①当 0 < < 40时, ( ) = 10( 20)2 + 1500··································6分
当 = 20时, ( ) = (20) = 1500·················································8分
②当 x≥ 40 10000时,L(x)=2000-(x+ ) ≤ 2000 200 = 1800·······························10分

当且仅当 = 100时等号成立·························································11分
∵1800> 1500
∴当生产 100(百)辆时,利润最大.··················································12分
22.解:(Ⅰ x)因为 x 0,2 ,令 t 2 1,4 ,则 g t fa x t 2 a 1 t a.
a 1
①若 1,即 a 1,则函数 y g t 在 1,4 上为增函数, g t min g 1 0,矛盾;····················22 分
a 1
②若 4,即a 7,则函数 y g t 在 1,4 上为减函数, g 4 g t 12 3a 1 13min ,解得 a ,矛盾 42 分3
a 1 y g t 1, a 1 a 1 ③若1 4,即1 a 7,则函数 在 上为减函数,在 , 4 上为增函数,············62 2 分 2
g t g a 1 a 1
2

min 2
1,解得 a 3或 a 1(舍);
2
综上所述, a 3;
(Ⅱ)由已知 A x f3 x fa 0 x 4x 4 2x 3 0 x 2x 1 2x 3 0 ,··························7分
x
所以, U A x 2 1 2x 3 0 x 1 2x 3 0, log2 3 ,··········································8分
由 fa x fa 2 x f2 2 化简整理得 4x 42 x 1 a 2x 22 x 2a 6,
2
即 2x 22 x 14 1 a 2x 22 x 2a 0,
令 s 2x
4
22 x 2 2x 2 , x 0, log x 2 x
2x 2
3 ,则 2 2 s 2,
当 x 0, log x2 3 时,令 t 2 1,3 ,
4
由双勾函数的单调性可知,函数 h t t 2在区间 1,2 上单调递减,在 2,3 上单调递增,
t
h t h 2 2,又 h 1 3, h 3 7 ,则 2 h t 3min ,即 2 s 3,·······························93 分
2 12
所以, s 2 14 1 a s 2 2a 0 ,整理得 s2 3s 12 as,此时 a s 3,s
由 12U A B 知, a s 3在 s 2,3 上有解,···············································10s 分
又 s s 12 3在 2,3 上是增函数,可得 s 1, 2 ,
s
因此,实数 a的取值范围为 1,2 .······························································12分
同课章节目录