2021-2022学年冀教版八年级数学上册《16.3角的平分线》同步练习题(附答案)
1.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )
A.8 B.6 C.4 D.2
2.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )
A.10 B.7 C.5 D.4
3.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
A.11 B.5.5 C.7 D.3.5
4.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )
A.3 B.4 C.5 D.6
5.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为( )
A. B.2 C.3 D.2
6.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为( )
A.2 B.2 C.4 D.4
7.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
A.15 B.30 C.45 D.60
8.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )
A.一处 B.二处 C.三处 D.四处
9.如图,点P是∠AOB的角平分线OC上一点,PN⊥OB于点N,点M是线段ON上一点.已知OM=3,ON=5,点D为OA上一点若满足PD=PM,则OD的长度为( )
A.3 B.5 C.5或7 D.3或7
10.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= .
11.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是 .
12.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:
(1)AM⊥DM;
(2)M为BC的中点.
13.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.
14.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.
15.已知:如图,BP、CP分别是△ABC的外角平分线,PM⊥AB于点M,PN⊥AC于点N.求证:PA平分∠MAN.
16.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.
求证:OC是∠AOB的平分线.
17.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.
求证:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是线段CD的垂直平分线.
18.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)说明BE=CF的理由;
(2)如果AB=5,AC=3,求AE、BE的长.
19.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.
(1)求证:OC平分∠ACD;
(2)求证:OA⊥OC;
(3)求证:AB+CD=AC.
20.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:
(1)CF=EB.
(2)AB=AF+2EB.
21.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠EBC=180°
求证:2AE=AB+AD.
22.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求证:AD平分∠BAC;
(2)直接写出AB+AC与AE之间的等量关系.
23.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,
求证:∠A+∠C=180°.
24.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.
(1)求证:CF=EB.
(2)若AB=12,AF=8,求CF的长.
25.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,
求证:FK∥AB.
26.(1)如图1,在△ABC中,AD平分∠BAC交BC于D,DE⊥AB于E,DF⊥AC于F,则有相等关系DE=DF,AE=AF.
(2)如图2,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB、AC相交于M、N两点,其它条件不变,那么又有相等关系AM+ =2AF,请加以证明.
(3)如图3,在Rt△ABC中,∠C=90°,∠BAC=60°,AC=6,AD平分∠BAC交BC于D,∠MDN=120°,ND∥AB,求四边形AMDN的周长.
参考答案
1.解:过点P作PE⊥BC于E,
∵AB∥CD,PA⊥AB,
∴PD⊥CD,
∵BP和CP分别平分∠ABC和∠DCB,
∴PA=PE,PD=PE,
∴PE=PA=PD,
∵PA+PD=AD=8,
∴PA=PD=4,
∴PE=4.
故选:C.
2.解:作EF⊥BC于F,
∵BE平分∠ABC,ED⊥AB,EF⊥BC,
∴EF=DE=2,
∴S△BCE=BC EF=×5×2=5,
故选:C.
3.解:作DM=DE交AC于M,作DN⊥AC于点N,
∵DE=DG,
∴DM=DG,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DN,
在Rt△DEF和Rt△DMN中,
,
∴Rt△DEF≌Rt△DMN(HL),
∵△ADG和△AED的面积分别为50和39,
∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,
S△DNM=S△EDF=S△MDG=×11=5.5.
故选:B.
4.解:如图,过点D作DE⊥AB于E,
∵∠C=90°,AD平分∠BAC,
∴DE=CD,
∴S△ABD=AB DE=×10 DE=15,
解得DE=3,
∴CD=3.
故选:A.
5.解:过点P作PB⊥OM于B,
∵OP平分∠MON,PA⊥ON,PA=3,
∴PB=PA=3,
∴PQ的最小值为3.
故选:C.
6.解:∵P是∠AOB角平分线上的一点,∠AOB=60°,
∴∠AOP=AOB=30°,
∵PD⊥OA,M是OP的中点,DM=4cm,
∴OP=2DM=8,
∴PD=OP=4,
∵点C是OB上一个动点,
∴PC的最小值为P到OB距离,
∴PC的最小值=PD=4.
故选:C.
7.解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,
又∵∠C=90°,
∴DE=CD,
∴△ABD的面积=AB DE=×15×4=30.
故选:B.
8.解:如图所示,加油站站的地址有四处.
故选:D.
9.解:如图:过点P作PE⊥OA于点E
∵OC平分∠AOB,PE⊥OA,PN⊥OB
∴PE=PN
∵PE=PN,OP=OP
∴△OPE≌△OPN(HL)
∴OE=ON=5
∵OM=3,ON=5
∴MN=2
若点D在线段OE上,
∵PM=PD,PE=PN
∴△PMN≌△PDE(HL)
∴DE=MN=2
∴OD=OE﹣DE=3
若点D在射线EA上,
∵PM=PD,PE=PN
∴△PMN≌△PDE(HL)
∴DE=MN=2
∴OD=OE+DE=7
故选:D.
10.解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,
∵OA,OB,OC是△ABC的三条角平分线,
∴OD=OE=OF,
∵△ABC的三边AB、BC、CA长分别为40、50、60,
∴S△ABO:S△BCO:S△CAO=(AB OD):(BC OF):(AC OE)=AB:BC:AC=40:50:60=4:5:6.
故答案为:4:5:6.
11.解:∵CD平分∠ACB,DE⊥AC,DF⊥BC,
∴DF=DE=2,
∴S△BCD= BC×DF=×4×2=4
故答案为:4.
12.解:(1)∵AB∥CD,
∴∠BAD+∠ADC=180°,
∵AM平分∠BAD,DM平分∠ADC,
∴2∠MAD+2∠ADM=180°,
∴∠MAD+∠ADM=90°,
∴∠AMD=90°,
即AM⊥DM;
(2)作NM⊥AD交AD于N,
∵∠B=90°,AB∥CD,
∴BM⊥AB,CM⊥CD,
∵AM平分∠BAD,DM平分∠ADC,
∴BM=MN,MN=CM,
∴BM=CM,
即M为BC的中点.
13.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,
∴DC=DE,
在△DCF和△DEB中,,
∴△DCF≌△DEB,(SAS),
∴BD=DF.
14.证明:∵BD为∠ABC的平分线,
∴∠ABD=∠CBD,
在△ABD和△CBD中,,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB,
∵点P在BD上,PM⊥AD,PN⊥CD,
∴PM=PN.
15.证明:作PD⊥BC于点D,
∵BP是△ABC的外角平分线,PM⊥AB,PD⊥BC,
∴PM=PD,
同理,PN=PD,
∴PM=PN,又PM⊥AB,PN⊥AC,
∴PA平分∠MAN.
16.证明:在Rt△PFD和Rt△PGE中,,
∴Rt△PFD≌Rt△PGE(HL),
∴PD=PE,
∵P是OC上一点,PD⊥OA,PE⊥OB,
∴OC是∠AOB的平分线.
17.证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,
∴ED=EC,即△CDE为等腰三角形,
∴∠ECD=∠EDC;
(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,
∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,
∴△OED≌△OEC(AAS),
∴OC=OD;
(3)∵OC=OD,且DE=EC,
∴OE是线段CD的垂直平分线.
18.(1)证明:连接BD,CD,
∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°,
∵DG⊥BC且平分BC,
∴BD=CD,
在Rt△BED与Rt△CFD中,
,
∴Rt△BED≌Rt△CFD(HL),
∴BE=CF;
(2)解:在△AED和△AFD中,
,
∴△AED≌△AFD(AAS),
∴AE=AF,
设BE=x,则CF=x,
∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,
∴5﹣x=3+x,
解得:x=1,
∴BE=1,AE=AB﹣BE=5﹣1=4.
19.证明:(1)过点O作OE⊥AC于E,
∵∠ABD=90゜,OA平分∠BAC,
∴OB=OE,
∵点O为BD的中点,
∴OB=OD,
∴OE=OD,
∴OC平分∠ACD;
(2)在Rt△ABO和Rt△AEO中,
,
∴Rt△ABO≌Rt△AEO(HL),
∴∠AOB=∠AOE,
同理求出∠COD=∠COE,
∴∠AOC=∠AOE+∠COE=×180°=90°,
∴OA⊥OC;
(3)∵Rt△ABO≌Rt△AEO,
∴AB=AE,
同理可得CD=CE,
∵AC=AE+CE,
∴AB+CD=AC.
20.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CDF和Rt△EDB中,
,
∴Rt△CDF≌Rt△EDB(HL).
∴CF=EB;
(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴CD=DE.
在Rt△ADC与Rt△ADE中,
,
∴Rt△ADC≌Rt△ADE(HL),
∴AC=AE,
∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
21.证明:过C作CF⊥AD于F,
∵AC平分∠BAD,
∴∠FAC=∠EAC,
∵CE⊥AB,CF⊥AD,
∴∠DFC=∠CEB=90°,
在△AFC和△AEC中,
∴△AFC≌△AEC(AAS),
∴AF=AE,CF=CE,
∵∠ADC+∠EBC=180°
∴∠FDC=∠EBC,
在△FDC和△EBC中,
∴△FDC≌△EBC(AAS)
∴DF=EB,
∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE
∴2AE=AB+AD
22.(1)证明:∵DE⊥AB于E,DF⊥AC于F,
∴∠E=∠DFC=90°,
∴△BDE与△CDF均为直角三角形,
∵
∴△BDE≌△CDF(HL).
∴DE=DF,
∵DE⊥AB于E,DF⊥AC于F,
∴AD平分∠BAC;
(2)AB+AC=2AE.
证明:∵BE=CF,AD平分∠BAC,
∴∠EAD=∠CAD,
∵∠E=∠AFD=90°,
∴∠ADE=∠ADF.
在△AED与△AFD中,
∵,
∴△AED≌△AFD(ASA).
∴AE=AF.
∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.
23.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,
∵BD平分∠ABC,
∴DE=DF,∠DEC=∠F=90°,
在RtCDE和Rt△ADF中,
,
∴Rt△CDE≌Rt△ADF(HL),
∴∠FAD=∠C,
∴∠BAD+∠C=∠BAD+∠FAD=180°.
24.(1)证明:∵AD平分∠BAC,∠C=90°,DE⊥AB于E,
∴DE=DC.
在Rt△CDF与Rt△EDB中,
,
∴Rt△CDF≌Rt△EDB(HL),
∴CF=EB.
(2)解:设CF=x,则AE=12﹣x,
∵AD平分∠BAC,DE⊥AB,
∴CD=DE.
在Rt△ACD与Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,即8+x=12﹣x,
解得x=2,即CF=2.
25.证明:过点K作MK∥BC,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
又∵∠ACB=90°,CD⊥AB,
∴∠BAE+∠DKA=∠CAE+∠CEA=90°,
∴∠DKA=∠CEA,
又∵∠DKA=∠CKE,
∴∠CEA=∠CKE,∴CE=CK,又CE=BF,
∴CK=BF(4分)
而MK∥BC,
∴∠B=∠AMK,
∴∠BCD+∠B=∠DCA+∠BCD=90°,
∴∠AMK=∠DCA,
在△AMK和△ACK中,
∴∠AMK=∠ACK,AK=AK,∠MAK=∠CAK,
∴△AMK≌△ACK,(4分)
∴CK=MK,
∴MK=BF,MK∥BF,
四边形BFKM是平行四边形,(2分)
∴FK∥AB.(2分)
26.(1)证明:∵AD平分∠BAC,
∴∠BAD=∠CAD,
∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°,
在△ADE和△ADF中,
,
∴△ADE≌△ADF(AAS),
∴DE=DF,AE=AF;
(2)解:AM+AN=2AF;
证明如下:由(1)得DE=DF,
∵∠MDN=∠EDF,
∴∠MDE=∠NDF,
在△MDE和△NDF中,
,
∴△MDE≌△NDF(ASA),
∴ME=NF,
∴AM+AN=(AE+ME)+(AF﹣NF)=AE+AF=2AF;
(3)由(2)可知AM+AN=2AC=2×6=12,
∵∠BAC=60°,AD平分∠BAC交BC于D,
∴∠BAD=∠CAD=30°,
∵ND∥AB,
∴∠ADN=∠BAD=30°,
∴∠CAD=∠ADN,
∴AN=DN,
在Rt△CDN中,DN=2CN,
∵AC=6,
∴DN=AN=×6=4,
∵∠BAC=60°,∠MDN=120°,
∴∠CDE=∠MDN,
∴DM=DN=4,
∴四边形AMDN的周长=12+4×2=20.