2021-2022学年冀教版九年级数学下册29.3切线的性质与判定 解答题专题训练(Word版含答案)

文档属性

名称 2021-2022学年冀教版九年级数学下册29.3切线的性质与判定 解答题专题训练(Word版含答案)
格式 doc
文件大小 405.7KB
资源类型 教案
版本资源 冀教版
科目 数学
更新时间 2021-12-15 23:44:34

图片预览

文档简介

2021-2022学年冀教版九年级数学下册《29.3切线的性质与判定》解答题专题训练(附答案)
1.如图,A,B,C,D四点在⊙O上,AD,BC的延长线相交于点E,直径AD=10,OE=13,且∠EDC=∠ABC.
(1)求证:;
(2)计算CE BE的值;
(3)探究:BE的取值范围.
2.如图,已知:AB是⊙O的直径,AC是切线,A为切点,BC交⊙O于点D,切线DE交AC于点E.求证:AE=EC.
3.如图,P是⊙O外一点,割线POB与⊙O相交于A、B,切线PC与⊙O相切于C,若PA=2,PC=3,求⊙O的半径.
4.如图,已知等腰△ABC,AB=AC,过A、C两点的圆⊙O切AB于A,BC的延长线交⊙O于D,∠ABD的角平分线交AC于E,交AD于F.
(1)求证:AE=AF;(2)若AC=CD=2,求AD.
5.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(Ⅰ)若AB=4,求的长;
(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.
6.如图,AB与⊙O相切于点B,AO交⊙O于点C,AO的延长线交⊙O于点D,E是上不与B,D重合的点,sinA=.
(1)求∠BED的大小;
(2)若⊙O的半径为3,点F在AB的延长线上,且BF=3,求证:DF与⊙O相切.
7.已知:AB是⊙O的直径,C是AB上一点,PC⊥AB,交⊙O于F,PDE是割线,交⊙O于D、E.求证:PC2=PD PE+AC CB.
8.如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.
(1)判断△OBC的形状,并证明你的结论;
(2)求BC的长;
(3)求⊙O的半径OF的长.
9.如图,从⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,若PA=5cm,C是上的一个动点(点C与A、B两点不重合),过点C作⊙O的切线,分别交PA、PB于点D、E,求△PED的周长是多少?
10.如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E.
求证:(1)AD=AE;(2)AB AE=AC DB.
11.如图,点C在以AB为直径的⊙O上,BD平分∠ABC交⊙O于点D,过D作BC的垂线,垂足为E.
(1)求证:DE与⊙O相切;
(2)若AB=5,BE=4,求BD的长;
(3)请用线段AB、BE表示CE的长,并说明理由.
12.如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连接CO并延长交BM于点A,过点A作AD⊥BO于点D.
(1)求证:AB为⊙O的切线;
(2)若BC=6,tan∠ABC=,求AD的长.
13.如图,⊙O的直径为AB,点C在圆周上(异于A、B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.
14.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线.
15.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)求DE的长.
16.如图,AC是⊙O的直径,AD是⊙O的弦,过点C作CB⊥AC交AD的延长线于点B,点E为BC的中点,连接DE、DC.
(1)求证:ED=EC.
(2)求证:DE是⊙O的切线.
(3)若OA=DB,求tanB的值.
17.如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.
(1)求证:EF是⊙O的切线;
(2)连接BC,若AB=5,BC=3,求线段AE的长.
18.如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC;
(1)求证:直线DM是⊙O的切线;
(2)若DF=2,AF=5,求BD长.
19.已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:DC=BD;
(2)求证:DE为⊙O的切线.
20.如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作O,交斜边AC于点D,连接BD.
(1)若AB=3,BC=4,求边BD的长;
(2)取BC的中点E,连接ED,试证明ED与⊙O相切.
21.如图,PA、PB是⊙O的两条切线,A、B是切点,AC是⊙O的直径,∠BAC=35°,求∠P的度数.
22.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD2=CA CB;
(2)求证:CD是⊙O的切线;
(3)过点B作⊙O的切线BE交CD的延长线于点E,若BC=12,CA=4,求BE的长.
参考答案
1.(1)证明:∵四边形ABCD内接于⊙O,
∴∠CDE=∠B,∠DCE=∠A;
∴△CDE∽△ABE;
∴.
(2)解:根据题意得DE=13﹣5=8,AE=10+8=18;
根据割线定理得CE BE=AE DE=144.
(3)解:若点B和点C重合,即BE和圆相切,则根据勾股定理得BE=12;
∴12≤BE<18.
2.解:如图,连接AD,
∵AB是圆的直径.
∴∠ADB=90°,则∠ADC=90°
∴∠DAC+∠C=90°
∵AE,DE是圆的切线.
∴AE=DE
∴∠DAE=∠ADE
又∵∠DAE+∠C=∠ADE+∠EDC=90°
∴∠EDC=∠C
∴DE=EC
∴AE=EC
3.解:设圆半径为r 由切割线定理,
得 PC2=PA PB,
∴32=2(2+2r),
解得 ,
∴⊙O 的半径为.
4.(1)证明:∵BF平分∠ABD,
∴∠AEF=∠BAC+∠ABC,∠AFE=∠ADB+∠ABC,
又∵∠BAC=∠ADB,
∴AE=AF;
(2)解:∵AB是⊙O切线,AC=CD=2,
∴AB2=BC BD
∴4=BC×(BC+2)
∴BC=﹣1,BC=﹣﹣1(舍去),
∵AC=CD=2,
∴∠CAD=∠D,
∵AB是⊙O切线,
∴∠BAC=∠D,
∴AC是∠BAD的平分线,
∴=,
∴=
∴AD=.
答;AD的长为.
5.解:(Ⅰ)连接OC,OD,
∵∠COD=2∠CAD,∠CAD=45°,
∴∠COD=90°,
∵AB=4,
∴OC=AB=2,
∴的长=×π×2=π;
(Ⅱ)∵=,
∴∠BOC=∠AOD,
∵∠COD=90°,
∴∠AOD=45°,
∵OA=OD,
∴∠ODA=∠OAD,
∵∠AOD+∠ODA+∠OAD=180°,
∴∠ODA=67.5°,
∵AD=AP,
∴∠ADP=∠APD,
∵∠CAD=∠ADP+∠APD,∠CAD=45°,
∴∠ADP=CAD=22.5°,
∴∠ODP=∠ODA+∠ADP=90°,
∴PD是⊙O的切线.
6.解:(1)连接OB,如图1,
∵AB与⊙O相切于点B,
∴∠ABO=90°,
∵sinA=,
∴∠A=30°,
∴∠BOD=∠ABO+∠A=120°,
∴∠BED=∠BOD=60°;
(2)证明:连接OF,OB,如图2,
∵AB是切线,
∴∠OBF=90°,
∵BF=3,OB=3,
∴,
∴∠BOF=60°,
∵∠BOD=120°,
∴∠BOF=∠DOF=60°,
在△BOF和△DOF中,

∴△BOF≌△DOF(SAS),
∴∠OBF=∠ODF=90°,
∴DF与⊙O相切.
7.证明:延长PC交⊙O于G,
由割线定理,得PD PE=PF PG.
由相交弦定理,得AC BC=CF CG.
∵直径AB⊥FG,
∴CF=CG,
∴AB BC=CF2,
∴PD PE=PF PG=(PC﹣CF)(PC+CG)=(PC﹣CF)(PC+CF)=PC2﹣CF2,
∴PD PE+AC CB=PC2﹣CF2+CF2=PC2,
即 PC2=PD PE+AC CB.
8.(1)答:△OBC是直角三角形.
证明:∵AB、BC、CD分别与⊙O相切于E、F、G,
∴∠OBE=∠OBF=∠EBF,∠OCG=∠OCF=∠GCF,
∵AB∥CD,
∴∠EBF+∠GCF=180°,
∴∠OBF+∠OCF=90°,
∴∠BOC=90°,
∴△OBC是直角三角形;
(2)解:∵在Rt△BOC中,BO=6,CO=8,
∴BC==10;
(3)解:∵AB、BC、CD分别与⊙O相切于E、F、G,
∴OF⊥BC,
∴OF===4.8.
9.解:∵PA、PB、DE是圆O的切线,切点分别是A、B、C,
∴AP=BP,DA=DC,CE=BE,
∴△PED的周长是:PD+DE+PE
=PD+DC+CE+PE
=PD+DA+PE+BE
=PA+PB
=2PA=10cm.
答:△PED的周长是10cm.
10.证明:(1)∵∠ADE=∠APD+∠PAD,∠AED=∠CPE+∠C,
又∠APD=∠CPE,∠PAD=∠C.
∴∠ADE=∠AED.
∴AD=AE.
(2)∵∠APB=∠CPA,∠PAB=∠C,
∴△APB∽△CPA,得.
∵∠APE=∠BPD,∠AED=∠ADE=∠PDB,
∴△PBD∽△PEA,得.
∴.
∴AB AE=AC DB.
11.(1)证明:连接OD,
∵OD=OB,
∴∠ODB=∠OBD,
∵BD平分∠ABC,
∴∠OBD=∠CBD,
∴∠ODB=∠CBD,
∴OD∥BE,
∵BE⊥DE,
∴OD⊥DE,
∴DE与⊙O相切;
(2)解:∵AB是⊙O的直径,
∴∠ADB=90°,
∵BE⊥DE,
∴∠ADB=∠BED=90°,
∵BD平分∠ABC,
∴∠OBD=∠CBD,
∴△ABD∽△DBE,
∴,
∴=,
∴BD=2;
(3)解:结论CE=AB﹣BE,
理由:过D作DH⊥AB于H,
∵BD平分∠ABC,DE⊥BE,
∴DH=DE,
在Rt△BED与Rt△BHD中,,
∴Rt△BED≌Rt△BHD(HL),
∴BH=BE,
∵∠DCE+∠BCD=∠A+∠BCD=180°,
∴∠DCE=∠A,
∵∠DHA=∠DEC=90°,
∴△ADH≌△CDE(AAS),
∴AH=CE,
∵AB=AH+BH,
∴AB=BE+CE,
∴CE=AB﹣BE.
12.解:(1)过点O作OE⊥AB于点E,
∵O为∠MBN角平分线上一点,
∴∠ABD=∠CBD,
又∵BC为⊙O的切线,
∴AC⊥BC,
∵AD⊥BO于点D,
∴∠D=90°,
∴∠BCO=∠D=90°,
在△BOC和△BOE中,
∵,
∴△BOC≌△BOE(AAS),
∴OE=OC,
∵OE⊥AB,
∴AB是⊙O的切线;
(2)∵∠ABC+∠BAC=90°,∠EOA+∠BAC=90°,
∴∠EOA=∠ABC,
∵tan∠ABC=、BC=6,
∴AC=BC tan∠ABC=8,
则AB=10,
由(1)知BE=BC=6,
∴AE=4,
∵tan∠EOA=tan∠ABC=,
∴,
∴OE=3,OB==3,
∵∠ABD=∠OBC,∠D=∠ACB=90°,
∴△ABD∽△OBC,
∴,即=,
∴AD=2.
13.解:(1)∵AB是⊙O直径,C在⊙O上,
∴∠ACB=90°,
又∵BC=3,AB=5,
∴由勾股定理得AC=4;
(2)证明:连接OC
∵AC是∠DAB的角平分线,
∴∠DAC=∠BAC,
又∵AD⊥DC,
∴∠ADC=∠ACB=90°,
∴△ADC∽△ACB,
∴∠DCA=∠CBA,
又∵OA=OC,
∴∠OAC=∠OCA,
∵∠OAC+∠OBC=90°,
∴∠OCA+∠ACD=∠OCD=90°,
∴DC是⊙O的切线.
14.证明:(1)连接AD;
∵AB是⊙O的直径,
∴∠ADB=90°.
又∵DC=BD,
∴AD是BC的中垂线.
∴AB=AC.
(2)连接OD;
∵OA=OB,CD=BD,
∴OD∥AC.
∴∠ODE=∠CED.
又∵DE⊥AC,
∴∠CED=90°.
∴∠ODE=90°,即OD⊥DE.
∴DE是⊙O的切线.
15.证明:(1)连接OD,
∵AD平分∠BAC,
∴∠DAE=∠DAB,
∵OA=OD,∴∠ODA=∠DAO,
∴∠ODA=∠DAE,
∴OD∥AE,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙O切线.
(2)过点O作OF⊥AC于点F,
∴AF=CF=3,
∴OF==4.
∵∠OFE=∠DEF=∠ODE=90°,
∴四边形OFED是矩形,
∴DE=OF=4.
16.(1)证明:连接OD,如图,
∵AC是⊙O的直径,
∴∠ADC=90°,
∴△BDC为直角三角形,
∵E为BC边上的中点,
∴ED=EC;
(2)证明:∵DE=EC,
∴∠EDC=∠ECD,
∵OC=OD,
∴∠OCD=∠ODC,
∴∠EDC+∠ODC=∠ECD+∠OCD,
即∠ODE=∠OCE=90°,
∴OD⊥DE,
∴DE是⊙O的切线;
(3)解:在Rt△ABC中,CD⊥AB,
∴AC2=AD×AB,
∵OA=DB,
∴AC=2DB,
∴20DB2=AD(AD+DB),
整理得,AD2+DB DB﹣20DB2=0,
∴(AD+5DB)(AD﹣4DB)=0,
∴AD=4DB,AD=﹣5DB(舍去),
∵DC2=AC2﹣AD2
∴DC=2DB,
∴tanB==2.
17.(1)证明:连接OC,
∵OA=OC,
∴∠OCA=∠BAC,
∵点C是的中点,
∴∠EAC=∠BAC,
∴∠EAC=∠OCA,
∴OC∥AE,
∵AE⊥EF,
∴OC⊥EF,即EF是⊙O的切线;
(2)解:∵AB为⊙O的直径,
∴∠BCA=90°,
∴AC==4,
∵∠EAC=∠BAC,∠AEC=∠ACB=90°,
∴△AEC∽△ACB,
∴=,
∴AE==.
18.(1)证明:如图所示,连接OD,
∵点E是△ABC的内心,
∴∠BAD=∠CAD,
∴=,
∴OD⊥BC,
又∵∠BDM=∠DAC,∠DAC=∠DBC,
∴∠BDM=∠DBC,
∴BC∥DM,
∴OD⊥DM,
又∵OD为⊙O半径,
∴直线DM是⊙O的切线;
(2)∵=,
∴∠DBF=∠DAB,
又∵∠BDF=∠ADB(公共角),
∴△DBF∽△DAB,
∴,即DB2=DF DA,
∵DF=2,AF=5∴DA=DF+AF=7
∴DB2=DF DA=14
∴DB=.
19.证明:(1)连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
又∵AB=AC,
∴DC=BD;
(2)连接半径OD,
∵OA=OB,CD=BD,
∴OD∥AC,
∴∠ODE=∠CED,
又∵DE⊥AC,
∴∠CED=90°,
∴∠ODE=90°,即OD⊥DE.
∴DE是⊙O的切线.
20.解:(1)∵∠ABC=90°,AB=3,BC=4,
∴AC==5,
∵AB是直径,
∴∠ADB=90°,即BD⊥AC,
∵ AB BC= AC BD,
∴BD=.
(2)证明:连接OD.
∵OD=OB(⊙O的半径),
∴∠OBD=∠BDO
∵AB是直径(已知),
∴∠ADB=90°(直径所对的圆周角是直角),
∴∠ADB=∠BDC=90°;
在Rt△BDC中,E是BC的中点,
∴BE=CE=DE(直角三角形斜边上的中线等于斜边的一半),
∴∠DBE=∠BDE
又∵∠ABC=∠OBD+∠DBE=90°,
∴∠ODE=∠BDO+∠BDE=90°(等量代换);
∵点D在⊙O上,
∴ED与⊙O相切;
21.解:∵PA、PB是⊙O的两条切线,A、B是切点,AC是⊙O的直径,
∴∠OAP=∠OBP=90°,
∵∠BAC=35°,OA=OB,
∴∠BAC=∠OBA=35°,
∴∠PAB=∠PBA=55°,
∴∠P=180°﹣∠PAB﹣∠PBA=70°,
即∠P的度数是70°.
22.(1)证明:∵∠CDA=∠CBD,∠C=∠C,
∴△ADC∽△DBC,
∴,∴CD2=CA CB
(2)证明:连接OD,如图所示:
则∠ADO=∠BAD,
∵AB是⊙O的直径,
∴∠BDA=90°,
∴∠CBD+∠BAD=90°,
∵∠CDA=∠CBD,
∴∠CDA+∠ADO=90°=∠CDO,
∴CD⊥OD,
∴CD是⊙O的切线;
(3)解:∵BE是⊙O的切线,
∴∠CBE=90°,
由(2)知∠CDO=90°,
∴∠CDO=∠CBE,
又∵∠C=∠C,
∴△CDO∽△CBE,
∴,
∵BC=12,CA=4,
∴AB=8,
∴OA=OD=4,
∴OC=CA+OA=8,
在Rt△CDO中,CD===4,
∴,
解得:BE=.