第25章《概率初步》同步训练
2021—2022学年人教版九年级数学上册
一、单选题
1.学校60周年校庆,要从甲、乙、丙三人中选两名志愿者,甲被选中的概率是( ).
A. B. C. D.1
2.同时抛掷两枚均匀的硬币,落地后两枚硬币都是正面朝上的概率是( )
A. B. C. D.
3.下列事件中,是必然事件的是( )
A.明天北京新冠肺炎新增0人
B.车辆随机到达一个路口,遇到红灯
C.如果a2=b2,那么a=b
D.将花生油滴在水中,油会浮在水面上
4.一枚质地均匀的正六面体骰子六个面分别刻有1到6的点数,掷这枚骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数是6的可能性( )
A.等于朝上点数为5的可能性
B.大于朝上点数为5的可能性
C.小于朝上点数为5的可能性
D.无法确定
5.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光.任意闭合其中一个开关,则小灯泡发光的概率等于( ).
A. B. C. D.
6.某口袋中有红色、黄色、蓝色玻璃球共100个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,则估计红、黄、蓝球的个数分别为( ).
A.35,25,40 B.40,25,35 C.25,40,25 D.40,35,25
7.下列说法中:
①如果一个事件发生的可能性很小,那么它的概率为0;
②如果一个事件发生的可能性很大,那么它的概率为1;
③如果一个事件可能发生,也可能不发生,那么它的概率介于0与1之间;
其中,正确的说法有( )
A.1个 B.2个 C.3个 D.0个
8.抛掷一个均匀的正方体骰子,下列事件中出现机会最小的是( )
A.奇数朝上 B.偶数朝上 C.合数朝上 D.质数朝上
9.某班共有学生36人,其中男生20人,女生16人,今从中选一名班长,任何人都有同样的当选机会,下列叙述正确的是( )
A.男生当选与女生当选的可能性相等 B.男生当选的可能性大于女生当选的可能性
C.男生当选的可能性小于女生当选的可能性 D.无法确定
10.文具盒中有4支铅笔,3支圆珠笔,1支钢笔,下列说法表述正确的是( )
A.(取到铅笔) B.(圆珠笔)
C.(取到圆珠笔) D.(取到钢笔)
11.现有A、B两枚均匀的骰子,用骰子A的点数为x,骰子B的点数为y的方式来确定点,则各掷一次骰子所确定的点P落在已知抛物线上的概率是( ).
A. B. C. D.
12.在写有1至10的10张卡片中,如果第1次抽出写有3的卡片后(不放回),第2次任意抽取1张是奇数卡片的可能性是( )
A. B. C. D.
13.某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是( )
A.抛一枚硬币,出现正面朝上
B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数
C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的点数之和是7
14.设a,b是两个任意独立的一位正整数, 则点(a,b)在抛物线y=ax2-bx上方的概率是 ( )
A. B. C. D.
二、填空题
15.一个小球在光滑度相同的地板上(如图)自由滚动,并随机地停留在某块方砖上,则它最终停留在黑砖上的概率是______.
16.桌子上有 6 杯同样型号的杯子,其中 1 杯白糖水,2 杯矿泉水,3 杯凉白开,从 6 个杯子中随机取出1 杯,请你将下列事件发生的可能性从大到小排列:_________ .(填序号即可)①取到凉白开 ②取到白糖水 ③取到矿泉水 ④没有取到矿泉水
17.一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇均后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒子大约有白球____________个.
18.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为_____.
19.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是,则______.
20.从2,3,4,5这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是_________.
三、解答题
21.为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为 ;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
22.不透明的口袋里装有红、黄两种颜色的小球(除颜色不同外,其它都相同),其中红球2个,现在从中任意摸出一个球,摸到黄球的概率为.
(1)求袋中有几个黄球?
(2)第一次摸出一个小球(不放回),第二次再摸出一个小球,请用树状图或列表法求两次摸出的都是红球的概率.
23.在同升湖实验学校九年级的班级三人制篮球赛过程中,经过几轮激烈的角逐,最后由2班、5班、6班、9班进入了年级四强进行最后的名次争夺赛.现在葛老师规定先用抽签的方式决定将这4个班级分成2个小组,再由两个小组的胜出者争夺一二名,小组落败者争夺三四名.
(1)直接写出9班和5班抽签到一个小组的概率;
(2)若4个班级的实力完全相当,任何两个班级对决的胜率都是50%,求在年级四强的名次争夺赛中9班不与5班对决的概率.
24.为了解家长对“学生在校带手机”现象的看法,某校“九年级兴趣小组”随机调查了该校学生家长若干名,并对调查结果进行整理,绘制如下不完整的统计图:
请根据以上信息,解答下列问题
(1)这次接受调查的家长总人数为________人;
(2)在扇形统计图中,求“很赞同”所对应的扇形圆心角的度数;
(3)若在这次接受调查的家长中,随机抽出一名家长,恰好抽到“无所谓”的家长概率是多少.
试卷第1页,共3页
试卷第1页,共3页
参考答案
1.C
2.D
3.D
4.A
5.C
6.A
7.A
8.C
9.B
10.C
11.B
12.B
13.C
14.D
15.
16.④①③②
17.
18.12
19.8
20.
21.
解:(1)小明随机抽取1张卡片,抽到卡片编号为C的概率为,
故答案为:;
(2)画树状图如下:
共有9种等可能的结果数,其中两个班恰好选择一首歌曲的有3种结果,
所以两个班级恰好抽到同一首歌曲的概率为=.
22.
解:(1)设袋中黄球的个数为x个,
由题意得:
解得:x=1,
经检验x=1是原方程的解,
答:袋中黄球的个数为1个.
(2)画树状图如图:
共有6个等可能的结果,两次摸出的都是红球的结果有2个,
∴两次摸出的都是红球的概率为.
23.
(1)分组:(2,5)和(6,9);(2,6)和(5,9);(2,9)和(5,6)共3种,
9班和5班抽签到一个小组只有一种情况,
故概率为:;
(2)①分组为(2,5)和(6,9),
1、2名争夺 3、4名争夺
情况1 (2,6) (5,9)
情况2 (2,9) (5,6)
情况3 (5,6) (2,9)
情况4 (5,9) (2,6)
故概率为:;
②分组为(2,9)和(5,6),
1、2名争夺 3、4名争夺
情况1 (2,5) (6,9)
情况2 (2,6) (5,9)
情况3 (5,9) (2,6)
情况4 (6,9) (2,5)
故概率为:;
综上,在年级四强的名次争夺赛中9班不与5班对决的概率为.
24.
解:(1)50÷25%=200(人),所以这次调查的学生家长总人数为200;
故答案为:200;
(2)“无所谓”人数=200×20%=40(人)
∴“很赞同”人数=200-50-40-90=20(人)
∴“很赞同”对应的扇形圆心角=×360°=36°
故答案为:36°;
(3)∵“无所谓”的家长人数=40,∴抽到“无所谓”的家长概率=.
答案第1页,共2页
答案第1页,共2页