华东师大版数学七年级上册 5.2.3 平行线的性质 教案(表格式)

文档属性

名称 华东师大版数学七年级上册 5.2.3 平行线的性质 教案(表格式)
格式 docx
文件大小 29.7KB
资源类型 教案
版本资源 华师大版
科目 数学
更新时间 2021-12-18 10:49:14

图片预览

文档简介

§平行线的性质
教学目标:
1.知识与技能目标:
掌握平行线的三条性质, ,应用平行线的性质进行简单的推理和计算,培养学生观察分析能力和进行简单的逻辑推理能力.
2.过程与方法目标:
(1)在合作交流过程中,培养学生数学问题的转化能力。
(2)在学习过程中培养学生学习数学的合作交流能力。.
(3)学生通过活动感受知识的形成过程,加强对知识的理解.
3.情感与态度目标:
(1)通过平行线的性质观察、猜想、操作、推理、交流、归纳等探究过程中,发展学生空间观念和推理能力、实践探究能力.
(2)在学习知识的活动过程中,树立学生的自信心,培养学生学习数学的兴趣.
教学重点:
平行线的性质及简单应用.
教学难点:
平行线的性质与平行线的判定方法之间的联系与区别.
学法引导:
1.教师教法:采用尝试指导、合作交流的方法.
2.学法指导:分组讨论,合作交流,归纳展示。
教学模式:
探究发现教学模式.
教学方法:
直观教学法、发现教学法、主体互动法.
教学用具准备:
常用画图工具、量角器、白纸.
教学手段:
计算机辅助教学.
教学过程
教学环节 教师活动 学生活动 设计意图
一 创 设 情 境 导 入 新 课 1.复习导入 平行线的判定 2.知识回顾 如图:两直线被第三条直线所截,什么样的角是同位角、内错角、同旁内角? 思考. (
c
)学生回答: (
a
) (
b
) 1、同位角:在截线的同侧,在被截两直线的同旁。 2、内错角:在截线的两侧,在被截两直线之间。 3、同旁内角:在截线的同侧,在被截两直线之间。 由判定引入,可以检测学生上节课的学习情况。 对上节课所学的三线八角进行复习回顾,并为新课的学习做准备.
二 交 流 合 作 感 知 结 果 三 师 生 互 动 例 题 展 示 四 巩 固 知 识 拓 展 提 高 五. 知归识 纳 提总升 结 实验与探究一: 看课本第177页图10-11 猜一猜∠1和∠2相等吗? 还有别的方法吗? 图中还有其它同位角吗?它们的大小有什么关系? 是不是任意一条直线去截平行线a、b所得的同位角都相等呢? [结论] 两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等. 符号语言:∵a∥b, ∴∠1=∠2. 实验与探究二: 如图:已知a//b,那么2与 3相等吗?为什么?解 ∵a∥b(已知), ∴∠1=∠2(两直线平行, 同位角相等). ∵ ∠1=∠3(对顶角相等), ∴ ∠2=∠3(等量代换)) [结论]两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等. 符号语言:∵a∥b, ∴∠2=∠3. 合作交流三: 如图,已知a//b, 那么 2与4有什么关系呢? [结论]两条平行线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. . 符号语言: ∵a∥b, ∴ 2+ 4=180°. 例1如图,已知直线a∥b,c∥d,∠1 = 1060,求∠2, ∠3的度数. 变式1.已知条件不变,求∠3,∠4的度数? 变式2.如图,已知∠3 =∠4, ∠1=47°, 求∠2的度数? 知识提升 如图在四边形ABCD中,已知AB∥CD, ∠B = 600. ①求∠C的度数; ②由已知条件能否求得∠A的度数 幻灯片展示其他例题。 【总结】平行线的性质:由“线”定“角”, 平行线的判定:由“角”定“线”. 猜想 假设 实验(量一量、拼一拼) 证明 由此得出平行线性质1. (
c
) (
1
) (
b
) (
a
) (
3
) (
b
) (
2
) 学生回答: 让学生自己完成证明过程(可以借助同位角)让学生相互纠错。 学生总结、表述 由此得出平行线性质2. (
1
) (
a
) (
b
) (
4
) (
2
) (
b
) (
c
) 学生交流讨论并叙述. 解: ∵a//b (已知), ∴ 1= 2(两直线平行, 同位角相等). ∵ 1+ 4=180° (邻补角定义), ∴ 2+ 4=180° (等量代换). 学生总结、表述 由此得出平行线性质3. (
c
) (
1
) (
a
) (
4
) (
2
) (
3
) (
b
) 小组讨论,展示结果 学生回答 学生畅谈收获 回顾、归纳. 教师通过引导让学生通过猜想、假设、实验、证明的过程实际上也就是提出问题、分析问题、解决问题的过程,在这个过程中培养学生的数学逻辑思维。获取探究的喜悦。 让学生在小组交流讨论的过程中,体验获得知识的乐趣,培养学生的数学逻辑思维和空间思维,提高学生的团队精神,提高学习数学的积极性。. 学生从实践中得到的知识印象最深刻.在实验的基础上,组内同学相互帮助、争论、提示,能够进行推理证明. 锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点. 培养学生的逻辑思维能力和推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心. 例1的变形目的是巩固平行线的三条性质. 通过教师指正,可以规范学生的解题思路和格式,培养学生严谨的学习态度. 可以培养学生积极主动的学习意识,学会思考问题,分析问题. 循序渐进提高难度,提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力. 培养学生的总结能力 将本节课知识进行回顾.
六. 布置作业强化理 解 课本33页: 必做: 1、2、3 选做:B组 1 课后完成. 课后能进一步巩固,鼓励学生去发现身边的数学问题.
4