用一元二次方程解决问题
一、单选题
1.有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可到方程为( )
A. B. C. D.
2.长方形的周长为,其中一边长为,面积为则长方形中与的关系式为( )
A. B. C. D.
3.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得( )
A. B. C. D.
4.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是( )
A. B. C. D.
5.如图,为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的“”阴影带,鲜花带一边宽,另一边宽,剩余空地的面积为,求原正方形空地的边长米,可列方程为( )
A. B.
C. D.
6.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是( )
A.2s B.3s C.4s D.5s
7.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.若生产的产品一天的总利润为1120元,且同一天所生产的产品为同一档次,则该产品的质量档次是( )
A.6 B.8 C.10 D.12
8.若两个连续偶数的积是288.则这两个偶数的和等于( )
A.43或—43 B.43 C.34或—34 D.—34
9.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价( )
A.15元或20元 B.10元或15元 C.10元 D.5元或10元
10.某种服装,平均每天可销售50件,每件利润40元.若每件降价5元,则每天多售10件.如果要在扩大销量的同时,使每天的总利润达到2100元,每件应降价多少元?若设每件应降价元,则可列方程得( )
A. B.
C. D.
11.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是( )
A.2s B.3s C.4s D.5s
12.如图,△ABC中, AB =AC=24 cm, BC=16cm,AD= BD.如果点P在线段BC上以 2 cm/s 的速度由B点向C点运动,同时,点 Q在线段CA上以v cm/s 的速度由C点向A点运动,那么当△BPD 与△CQP全等时,v =( )
A.3 B.4 C.2或 4 D.2或3
二、填空题
13.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛72场,设参加比赛的球队有x支,根据题意,所列方程为 .
14.如图,要设计一副宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比2:3,如果要使彩条所占面积是图案面积的,则每个横彩条的宽度是 cm.
15.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对原有的小麦品种进行改良种植研究.在保持去年种植面积不变的情况下,今年预计小麦平均亩产量将在去年的基础上增加a%,因为优化了品种,预计每千克售价将在去年的基础上上涨2a%,全部售出后预计总收入将增加68%,则a的值为 .
16.有一个两位数,它的十位数字与个位数字之和是8,如果把十位数字与个位数字调换后,所得的两位数乘原来的两位数就得1855,则原来的两位数是_________.
17.2020年5月11日习总书记到山西大同云州区视察了有机黄花标准化种植基地,他指出要保护好、发展好这个产业,让黄花成为群众脱贫致富的“摇钱草”.黄花又名萱草、金针菜、忘忧草,是一种营养价值很高的蔬菜,从明朝开始,大同就享有“黄花之乡”的盛名,原价为70元/千克的黄花菜,每天可售出30千克,在试销时发现,售价每降,售出的黄花菜增加,现在每天销售这种黄花菜的总售价为2268元.根据题意,可列方程为:___________.
黄花菜喜光耐早地,但花期需水量大,若遇干旱花蕾易脱落.其地上部分不耐寒,开花期要求较高温度,较为适宜.黄花菜对地形要求不高,地壤忌过湿或积水
三、解答题
18.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
19.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站匀速开出,1小时后快车在慢车前12千米,快车到达乙站比慢车早25分钟,快车和慢车每小时各行驶多少千米?
20.如图,利用一面墙(墙的长度不限),用长的篱笆,怎样围成一个面积为的矩形场地?
21.参加一次商品交易会的两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?
22.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取降价措施.经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.
(1)若设每件衬衫降价x元,直接写出此时的销量为 .
(2)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
23.如图,矩形中,厘米,厘米,点P从A开始沿边向点B以1厘米秒的速度移动,点Q从点B开始沿边向点C以2厘米/秒的速度移动,如果P、Q分别是从A、B同时出发,设时间为x秒.
(1)经过几秒时,的面积等于8平方厘米?
(2)经过几秒时,的面积等于矩形面积的?
参考答案
1.D
解:x+1+(x+1)x=81
整理得,(1+x)2=81.
故选:D.
2.C
3.B
4.C
5.C
解:设原正方形的边长为xm,依题意有
(x 1)(x 2)=18,
故选:C.
6.B
【解析】解:设动点P,Q运动ts后,能使△PBQ的面积为15cm2,
则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,
×(8﹣t)×2t=15,
解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).
∴动点P,Q运动3s时,能使△PBQ的面积为15cm2.
故选:B.
7.A
【解析】设该产品的质量档次是x档,则每天的产量为[95﹣5(x﹣1)]件,每件的利润是[6+2(x﹣1)]元,
根据题意得:[6+2(x﹣1)][95﹣5(x﹣1)]=1120,
整理得:x2﹣18x+72=0,
解得:x1=6,x2=12(舍去).
故选A.
8.C
【解析】解:设一个偶数为x,则另一个偶数为x+2,
则有x(x+2)=288,
解得x1=16,x2=-18.
∴二者之和为16+18=34或-18-16=-34.
故选C.
9.D
解:设每千克水果应涨价x元,
依题意得方程:(500-20x)(10+x)=6000,
整理,得x2-15x+50=0,
解这个方程,得x1=5,x2=10.
答:每千克水果应涨价5元或10元.
故选:D.
10.A
解:设每件服装应降价x元,根据题意,得:
故选:A.
11.B
解:设动点P,Q运动ts后,能使△PBQ的面积为15cm2,
则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,
×(8﹣t)×2t=15,
解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).
∴动点P,Q运动3s时,能使△PBQ的面积为15cm2.
故选:B.
12.D
解:情况一:
解:∵△ABC中,AB=AC=24厘米,点D为AB的中点,
∴BD=12厘米,
情况一:
若△BPD≌△CPQ,则需BD=CQ=12厘米,BP=CP=BC=×16=8(厘米)
∵点Q的运动速度为2厘米/秒,
∴点Q的运动时间为:8÷2=4(s),
∴v=CQ÷4= 12÷4=3(厘米/秒);
情况二:
②若△BPD≌△CQP,则CP=BD=12厘米,BP=CQ,
得出,
解得:解出即可.
因此v的值为:2厘米/秒或3厘米/秒,
故选:D.
13.解:设参加比赛的球队有x支,
依题意得:x(x﹣1)=72.
故答案为:x(x﹣1)=72.
14.解:设每个横彩条的宽度是2xcm,则每个竖彩条的宽度是3xcm,空白部分可合成长为(30﹣2×3x)cm,宽为(20﹣2×2x)cm的矩形,
依题意得:(30﹣2×3x)(20﹣2×2x)=30×20×(1﹣),
整理得:(5﹣x)2=16,
解得:x1=1,x2=9(不合题意,舍去),
∴2x=2×1=2.
故答案为:2.
15.解:依题意得:(1+a%)(1+2a%)=1+68%,
令m=a%,则原方程可化简为2m2+3m﹣0.68=0,
解得:m1=0.2,m2=﹣1.7.
又∵m=a%,
∴a1=20,a2=﹣170(不合题意,舍去).
故答案为:20.
16.35或53.
解:设原两位数的十位数字为x,则个位数字是(8-x),由题意得
[10x+(8-x)]·[10(8-x)+x]=1855.
化简得x2-8x+15=0,
解之得:x1=3,x2=5.
经检验,x1=3,x2=5都符合题意.
答:原两位数是35或53.
17.
解:原价为70元/千克的黄花菜,每天可售出30千克,在试销时发现,售价每降,售出的黄花菜增加,
∴现价为,卖出的黄花菜数量为
故依题意可得:
故答案为:.
18.每轮感染中平均1台电脑会感染8台电脑,3轮感染后被感染的电脑会超过700台.
解:设每轮感染中平均1台电脑会感染台电脑.
根据题意可列:,
解得:,(舍去).
∴3轮感染后,被感染得电脑为:.
答:每轮感染中平均1台电脑会感染8台电脑,3轮感染后被感染的电脑会超过700台.
19.快车每小时行驶72千米,慢车每小时行驶60千米
【解析】设慢车每小时行驶x千米,则快车每小时行驶(x+12)千米,
依题意得-=.
解得x1=-72,x2=60.
经检验,x1=-72,x2=60都是原方程的解.
但x1=-72不合题意,应舍去.
故x=60.
所以x+12=72.
答:快车每小时行驶72千米,慢车每小时行驶60千米.
20.用20m长的篱笆围成一个长为10 m,宽为5 m的矩形(其中一边长10m,另两边长5 m)
【解析】解:设与墙垂直的篱笆长为m,则与墙平行的篱笆长为m,
根据题意,得,
整理得,,
解得,
.
答:用20m长的篱笆围成一个长为10 m,宽为5 m的矩形(其中一边长10m,另两边长5 m).
21.10.
【解析】设共有x家公司参加商品交易会,由题意得:,解得:,(舍去).
答:共有10家公司参加商品交易会.
22.(1)20+2x;(2)每件衬衫应降价20元
【解析】(1)每件衬衫降价x元,则销售量为(20+2x)件,
故答案为:20+2x;
(2)根据题意得:
﹣2x2+60x+800=1200,
解之得x1=10,x2=20.
根据题意要尽快减少库存,所以应降价20元.
答:每件衬衫应降价20元.
23.(1)2秒或4秒;(2)秒或秒
解:(1)设经过x秒时,的面积等于8平方厘米,则厘米,厘米.
根据题意,得,
整理,得,
解得.
答:经过2秒或4秒时,的面积等于8平方厘米;
(2)设经过y秒时,的面积等于矩形面积的,
则厘米,厘米,
根据题意,得,整理,得,
解得:.
答:经过秒或秒时,的面积等于矩形面积的.