第5课时 有趣的测量
课时目标导航
教学导航
一、教学内容
有趣的测量。(教材第46页)
二、教学目标
1.结合具体活动情境,经历测量石块体积的过程,探索不规则物体体积的测量方法。
2.在实践与探究的过程中,尝试用不同方法解决问题,提高解决问题的能力。
三、重点难点
重点:掌握不规则物体体积的测量方法。
难点:尝试用多种方法解决实际问题。
四、教学准备
教师准备:长方体容器、水、不规则石块、烧杯、量杯、水槽、课件PPT。
教学过程
一、情境引入
师:前面我们学习了计算长方体和正方体的体积,但在我们的周围还有许多物体的形状并不是规则的正方体或长方体,如苹果、乒乓球、鸡蛋等。那像这样的物体还能直接用公式计算出它们的体积吗?应该怎样求呢?(小组讨论,交流方法)
师:今天我们就一起来探究不规则物体体积的测量方法。(板书课题:有趣的测量)
二、学习新课
探究测量石块体积的方法。
教师拿出石块,让学生观察。
引导学生理解石块的形状是不规则的,不容易测量出它的体积。
师:你们能想到用什么方法来测量它的体积?能不能运用我们以前学过的知识来解答?
教师组织学生利用工具设计实验自主探究石块的体积。(教师巡视并指导)
(1)液面升高法。
师:淘气是这样测量的,你看懂了吗?与同伴说一说。(单位: cm)(课件出示教材第46页淘气的测量方法)
学生思考、讨论,教师巡视。
教师指导学生按以下方法进行操作:
先在长方体水槽里放上合适的水,测量出长方体水槽的长、宽及水面的高度,再把石块沉入长方体水槽里,此时水面上升,测量出这时水面的高度。(课件出示)
师:通过上面的操作,你知道石块的体积与什么相等吗?(学生小组讨论,教师指名汇报)
使学生明确:放入石块后,用水和石块的总体积减去放入石块前水的体积,就是石块的体积,即上升的水的体积就是石块的体积。
教师归纳:淘气这种测量石块体积的方法叫作液面升高法。
石块的体积=容器的底面积×水面上升的高度。(板书)
按照上述方法,以小组为单位再次测量石块的体积。
学生按要求操作,教师巡视指导。
师:说一说,在测量时应注意什么?(学生小组讨论,指派代表汇报)
教师总结:用液面升高法测量不规则物体的体积时,一定要保证让不规则物体完全浸没在水中,且水没有溢出,这样水面升高部分水的体积才相当于不规则物体的体积。
(2)溢水法。
师:下面是另一种测量石块体积的方法。按照图示的步骤说一说,怎样能知道石块的体积?(课件出示教材第46页测量石块体积的第二种方法)
学生思考、讨论,教师巡视。
组织全班交流,整理汇报结果。
教师指导学生按以下方法进行操作:
先将烧杯倒满水,放在水槽中,再把石块放入盛满水的烧杯里,水会溢出流到水槽里,最后把水槽里的水倒在量杯里,记录下此时量杯的刻度。(课件出示)
师:通过上面的操作,你知道石块的体积与什么相等吗?(学生小组讨论,教师指名汇报)
使学生明确:量杯里水的体积就是石块的体积。
教师归纳:这种测量石块体积的方法叫作溢水法。
石块的体积=溢出的水的体积。(板书)
按照上述方法,以小组为单位再次测量石块的体积。
学生按要求操作,教师巡视指导。
师:说一说,在测量时应注意什么?(学生小组讨论,指派代表汇报)
师生共同总结:用溢水法测量不规则物体的体积时,如果被测物体是浮在水面上的,要用细棒把被测物体压进水中,使水刚刚没过被测物体,这样溢出的水的体积才相当于被测物体的体积。
三、巩固反馈
1.完成教材第47页“练一练”第1题。(学生独立思考,计算得出石头的体积)
72-55=17(mL) 17 mL=17 cm3
2.完成教材第47页“练一练”第2~3题。(学生独立思考,回顾“液面升高法”测量不规则物体体积的方法,集体订正)
第2题:2×1.5×0.2=0.6(dm3)
第3题:(600-250)÷2=175(mL)
175 mL=175 cm3
3.完成教材第47页“练一练”第4题。(小组讨论,指派代表汇报)
答案不唯一,例如:数出100粒黄豆,放入一个盛有一定量水的量杯中,先根据水面升高的情况,测量出100粒黄豆的体积,再除以100算出一粒黄豆的体积。
四、课堂小结
1.怎样测量不规则物体的体积?
2.测量不规则物体的体积时,有哪些需要注意或不太懂的地方?
板书设计
有趣的测量
1.液面升高法:石块的体积=容器的底面积×水面上升的高度。
2.溢水法:石块的体积=溢出的水的体积。
教学反思
1.让学生经历观察、猜想、实验操作等数学活动过程,尝试用多种方法解决实际问题,体验等量替换的数学方法。学生在汇报过程中互相学到了多种不规则物体体积的测量方法,为学生解决生活中的实际问题打下了基础。
2.本节课为学生营造了一个自主探究、自主创新的学习空间,学生感受到数学就在身边,在生活中学数学、做数学、用数学,从而培养学生热爱生活、热爱数学的积极情感,达到了预期效果。
3.我的补充:
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
备课资料参考
典型例题准备
【例题】在一个长15 dm、宽12 dm的长方体水箱中,有10 dm深的水。如果在水中沉入一个棱长为30 cm的正方体铁块,那么此时水箱中水深多少分米?
分析:把这样一个铁块沉入水中,此时它被完全浸没,水面会自然上升,则用水和铁块的总体积除以长方体水箱的底面积,便可知此时水面的高度。
解答:30 cm=3 dm
(15×12×10+3×3×3)÷(15×12)=10.15(dm)
答:此时水箱中水深10.15 dm。
解法归纳:在盛有水的长方体容器中放入物体(完全浸没)后,容器中的水深等于水和物体的总体积除以长方体容器的底面积。
相关知识阅读
乌鸦喝水的秘密
不知道各位小朋友学过乌鸦喝水这篇课文没有,知道乌鸦是用什么方法才喝到瓶子中的水吗?这其中有个数学小秘密,我偷偷来告诉大家。
乌鸦发现瓶子里有水,但是瓶口太小,水面又太低,怎么办呢?聪明的乌鸦发现周围有小石子,于是衔来石子,放入瓶中。每放进一块小石子,水面就会上升一点;投进的石子体积越大,水面上升得就越高。这是因为投入的石子有“体积”,要占据一定的空间,于是,它就把与它体积相等的水“挤”上去。也就是说,被“挤”上去的水的体积恰好等于投进石子的体积。
石头的体积难以求出,那是因为它的形状很不规则。如果我们能计算出被它“挤”上去的水的体积,那么事情就好办多了。只要我们用一个长方体器皿,就很容易算出被“挤”出来的水的体积了。
假设这个长方体器皿底面是边长4厘米的正方形,放入石头后水面上升了2厘米,那么石头的体积是4×4×2=32(立方厘米)。
乌鸦的聪明之处在于它借助小石子,使瓶中的水面上升,从而喝到了它想喝的水。