1.3平抛运动 课时作业(Word版含答案)

文档属性

名称 1.3平抛运动 课时作业(Word版含答案)
格式 doc
文件大小 663.5KB
资源类型 教案
版本资源 粤教版(2019)
科目 物理
更新时间 2021-12-26 10:41:44

图片预览

文档简介

1.3平抛运动 课时作业(解析版)
一、选择题
1.平抛运动是常见的曲线运动之一,关于平抛运动的下列说法错误的是(  )
A.平抛运动物体的加速度恒定不变
B.平抛运动物体的速度变化量的方向总竖直向下
C.平抛运动的时间足够长,落地速度的方向可能竖直向下
D.平抛运动物体所受外力恒定不变
2.某射箭运动员在练习射箭时,箭水平射出的位置到靶的水平距离为18m,到靶心的竖直高度为0.45m。忽略空气阻力,将箭看作质点,重力加速度为10m/s2。如果箭射中靶心,则箭射出的速度大小为( )
A.30m/s B.40m/s C.50m/s D.60m/s
3.2022年冬奥会将在北京举行。如图所示,在某次热身训练中,某滑雪运动员以初速度v0从斜坡顶点沿水平方向滑出,最后落在斜坡上。不计空气阻力,已知斜坡倾角θ=37°,落地点离飞出点的距离为18.75 m,g取10 m/s2,sin37 =0.6,则v0为(  )
A.8 m/s B.9 m/s C.10 m/s D.11 m/s
4.甲、乙两物体从不同的高度水平抛出后,其运动轨迹如图所示。设两物体在空中运动的时间分别为t甲、t乙,不计空气阻力,比较t甲、t乙,下列关系正确的是(  )
A.t甲>t乙 B.t甲=t乙
C.t甲<t乙 D.因两物体质量未知,所以无法比较
5.轰炸机在距离水平地面4500m高度以速度60m/s,在轰炸目标正上方航线匀速飞行。不计空气阻力,重力加速度取g=10m/s2,为使投出的炸弹能落在目标上,应该(  )
A.在与目标的距离为4500m处投弹
B.在与目标的距离为1800m处投弹
C.在与目标的水平距离为1800m处投弹
D.在与目标的水平距离为4500m处投弹
6.有a、b两个分运动,它们的合运动为c,下列说法正确的是(  )
A.若a、b均为直线运动,则c一定为直线运动
B.若a、b均为匀变速直线运动,则c一定为匀变速直线运动
C.若a、b均为匀变速直线运动,则c可能为曲线运动
D.若a为匀速直线运动,b为匀变速直线运动,则c不可能为匀变速曲线运动
7.小球以初速度水平抛出,忽略空气阻力,落地前瞬间的速度大小为v,重力加速度取g,对整个运动过程中,下列选项正确的是(  )
A.小球速度的改变量为 B.小球运动的时间为
C.小球实际发生的位移为 D.小球下落的高度为
8.忽略一切阻力,重力加速度为,在足够高处将某一小球以大小为的初速度水平抛出,小球经时间速度大小为,则经时间,小球的速度大小应是(  )
A. B.
C. D.
9.如图所示,虚线是小球由空中某点水平抛出的运动轨迹,A、B为其运动轨迹上的两点。小球经过A点时,速度大小为6m/s、与竖直方向夹角为60°;它运动到B点时,速度方向与竖直方向夹角为30°,不计空气阻力,取重力加速度。下列说法中正确的是(  )
A.小球通过B点的速度为12m/s B.小球的抛出速度为3m/s
C.A、B之间的距离为3.6m D.小球从A点运动到B点的时间为0.6s
10.如图所示,半径为R=1m的圆弧固定在水平墙角,一小球(视为质点)以初速度v0从台面某一高度处水平向右飞出,经过一段时间,恰好经过圆弧面上点C(未画出),且速度方向与圆弧面相切,已知∠COB的正弦值为,则圆心O与水平台面的高度差H应为(  )
A.1.5m B.2m C.m D.m
11.从距地面h高处水平抛出两个相同的小球甲和乙,不计空气阻力,球的落地点到抛出点的水平距离分别是x甲和x乙,且,如图所示。则下列说法正确的是(  )
A.甲球在空中运动的时间短
B.甲、乙两球在空中运动的时间相等
C.甲球平抛的初速度小
D.甲、乙两球落地时速度大小相等
12.质点做平抛运动,则在若干个相等的时间内,下列物理量相等的是(  )
A.质点的速率增量 B.质点的速度增量
C.质点的水平路程增量 D.质点的竖直位移增量
13.关于平抛运动,下面的几种说法正确的是(  )
A.平抛运动是一种不受任何外力作用的运动
B.做平抛运动的物体,虽然它的速度方向不断改变,但它的运动是匀变速曲线运动
C.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动
D.所有只受重力作用的物体都做平抛运动
二、解答题
14.从20m高的楼上,以20m/s的速度水平抛出一个小球,不计空气阻力,取g = 10m/s2。求:
(1)小球从抛出到落地的时间是多少?
(2)小球的水平位移多大?
(3)小球落地时的速度大小和方向(与水平方向的夹角)?
15.如图所示,距地面高度h=5m的平台边缘水平放置一两轮间距为d=24m的传送带,一可视为质点的物块从光滑平台边缘以v0=10m/s的初速度滑上传送带。已知物块与传送带间的动摩擦因数μ=0.2,重力加速度大小g取10m/s2求:
(1)若传送带顺时针运动的速度为v=4m/s,求物块从开始滑上传送带到落地所用的时间t;
(2)传送带的速度满足什么条件时,物块离开传送带右边缘落地的水平距离最大,并求最大距离s;
(3)设传送带的速度为v',且规定传送带顺时针运动时v'为正,逆时针运动时v'为负。试分析画出物块离开传送带右边缘落地的水平距离s与v'的变化关系示意图线(写出计算过程,画出图线,结果可以用根号表示)。
参考答案
1.C
【详解】
AD.做平抛运动的物体,物体只受重力,加速度恒定,故AD不符合题意;
B.平抛运动的物体速度变化的方向与加速度g方向相同,始终是竖直向下,故B不符合题意;
C.平抛运动因为有水平方向的初速度,故落地速度与水平地面有一定夹角,故不可能竖直向下,故C符合题意。
故选C。
2.D
【详解】
箭射出后做平抛运动,在竖直方向有
t = = 0.3s
在水平方向有
x = v0t
代入数据有
v0 = 60m/s
故选D。
3.C
【详解】
由几何关系,可得
把平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动,有
联立可得
故选C。
4.A
【详解】
甲乙两物体都做平抛运动,竖直方向做自由落体运动,根据
解得
由图可知,可知
故选A。
5.C
【详解】
炸弹在竖直方向做自由落体运动,则落地的时间
则投弹时飞机与目标的水平距离为
故选C。
6.C
【详解】
A.若a、b均为直线运动,则c不一定为直线运动。如平抛运动的两个分运动均是直线运动,但合运动是曲线运动。A错误;
BC.若a、b均为匀变速直线运动,则c不一定为匀变速直线运动。当合初速度与合加速度不共线时,其合运动是匀变速曲线运动。B错误,C正确;
D.若a为匀速直线运动,b为匀变速直线运动,则c可能为匀变速曲线运动。如平抛运动。D错误。
故选C。
7.D
【详解】
A.小球速度的改变量即小球竖直方向的末速度
A错误;
B.小球运动的时间为
B错误;
CD.小球水平位移为
竖直位移为
实际发生的位移为
联立解得
C错误,D正确。
故选D。
8.D
【详解】
小球经时间速度大小为,则
则经时间,竖直速度
小球的速度大小
故选D。
9.D
【详解】
AB.根据平行四边形定则知,小球平抛运动的初速度为
再结合平行四边形定则知,小球通过B点的速度为
故AB错误;
D.小球在A点时竖直分速度为
在B点的竖直分速度为
则小球从A点到B点的时间为
故D正确;
C.A、B之间的竖直距离为
B间的水平距离为
根据平行四边形定则知,A、B之间的距离为
故C错误。
故选D。
10.B
【详解】
把C点速度分解如图所示
飞行时间为
水平位移
变形可得
代入y化简得
故选B。
11.BC
【详解】
AB.平抛运动在竖直方向上做自由落体运动,由

可知,甲、乙两球在空中运动的时间相等。故A错误B正确;
C.小球平抛的初速度
因,故甲球平抛的初速度小乙球平抛的初速度大。故C正确;
D.甲、乙两球落地时速度大小
由甲、乙两球在空中运动的时间相等,甲球平抛的初速度小乙球平抛的初速度大,可知甲球落地时速度大小小于乙球落地时速度大小。故D错误。
故选BC。
12.BC
【详解】
A.由平抛运动的规律可知,水平方向是匀速直线运动,竖直方向是自由落体运动,所以质点的瞬时速度是
因速度的大小叫速率,速率是标量,所以质点的速率增量是
由上式可知,在若干个相等的时间内,质点的速率增量不相等,A错误;
B.质点的加速度为g,由加速度的定义,可知速度增量是
v=g t
所以在若干个相等的时间内,质点的速度增量相等,B正确;
C.因为质点的水平运动是匀速直线运动,路程增量是
x=v0 t
所以在若干个相等时间内,质点的水平路程增量相等,C正确;
D.质点的竖直位移增量是
y= g( t)2
所以质点在若干个相等时间内,竖直位移增量不相等,D错误。
故选BC。
13.BC
【详解】
A.平抛运动是一种只受重力作用的运动,选项A错误;
B.做平抛运动的物体,虽然它的速度方向不断改变,但它的加速度是不变的,则它的运动是匀变速曲线运动,选项B正确;
C.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,选项C正确;
D.所有只受重力作用的物体不一定都做平抛运动,例如自由落体运动和竖直上抛、斜抛等运动,选项D错误。
故选BC。
14.(1)2s;(2)40m;(3)20m/s,与水平方向夹角45°
【详解】
(1)由平抛运动的规律
解得
s = 2s
(2)小球落地时的水平位移
m = 40m
(3)小球落地时
m/s = 20m/s,m/s = 20m/s
速度方向与水平方向的夹角为θ

θ = 45°
15.(1)4.75s;(2)14m;(3)
【详解】
(1)物块在传送带上滑动过度,对滑块,由牛顿第二定律
μmg=ma1
代入数据解得
a1=2m/s2
设物块做匀减速运动的位移为x1,由匀变速直线运动的速度-位移公式
v2-v02=-2a1x1
可得
x1=21m<d=24m
然后物块与传送带相对静止一起做匀速直线运动,
物块做匀减速直线运动的时间
物块匀速运动的时间
物块离开传送带后做平抛运动,竖直方向有
平抛运动的时间
t3=1s
物从开始滑上传送带到落地所用的时间
t=t1+t2+t3=(3+0.75+1)s=4.75s
(2)如果物块在传送带上一直做匀加速直线运动,物块离开传送带的速度最大,落地的水平距离有最大值,设物块离开传送带时的速度大小为v2,根据动能定理得
代入数据解得
v2=14m/s
传送带顺时针运动,传送带速度v≥14m/s时,物块落地的水平距离最大,最大距离
x2=v2t3=14×1m=14m
(3)如果传送带顺时针转动,速度v′≥14m/s,物体一直加速,射程最远,
s=14m
若物块一直做匀减速直线运动,设到达传送带右端时的速度为v3,由匀变速直线运动的速度-位移公式得
代入数据解得
v3=2m/s
则物体抛出时的速度大小为2m/s;
如果传送带顺时针转动,速度2m/s≤v′<14m/s,物体先加速后匀速,射程为
s=v′t1
如果传送带顺时针转动,速度v′<2m/s或传送带逆时针运动,物体一直做匀减速运动,射程为
s=2m
则水平距离s与v'的变化关系示意图线如图所示
试卷第4页,共4页
试卷第3页,共4页