2021_2022学年新教材高中数学第十章概率1.4概率的基本性质学案+课件(共29张PPT)+习题新人教A版必修第二册

文档属性

名称 2021_2022学年新教材高中数学第十章概率1.4概率的基本性质学案+课件(共29张PPT)+习题新人教A版必修第二册
格式 zip
文件大小 1.4MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2021-12-28 12:42:50

文档简介

概率的基本性质
新课程标准解读 核心素养
1.结合具体实例,理解概率的性质 数学抽象
2.掌握互斥事件、对立事件概率的运算法则 数学建模
甲、乙两人下棋,甲不输的概率是0.6,两人下成平局的概率是0.3.
[问题] 甲获胜的概率是多少?
                                    
                                    
                                    
知识点 概率的基本性质
性质1:对任意的事件A,都有P(A)≥0.
性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=,P( )=.
性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).
性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).
性质5:如果A B,那么P(A)P(B).
性质6:设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).
1.当A与B互斥(即AB= )时,有P(A∪B)=P(A)+P(B),这称为互斥事件的概率加法公式.
2.一般地,如果A1,A2,…,Am是两两互斥的事件,则P(A1∪A2∪…∪Am)=P(A1)+P(A2)+…+P(Am).
3.P(A)+P(A)=1.    
设事件A发生的概率为P(A),事件B发生的概率为P(B),那么事件A∪B发生的概率是P(A)+P(B)吗?
提示:不一定.当事件A与B互斥时,P(A∪B)=P(A)+P(B);当事件A与B不互斥时,P(A∪B)=P(A)+P(B)-P(A∩B).
1.判断正误.(正确的画“√”,错误的画“×”)
(1)任一事件的概率总在(0,1)内.(  )
(2)不可能事件的概率不一定为0.(  )
(3)必然事件的概率一定为1.(  )
(4)如果事件A与事件B互斥,那么P(A)+P(B)≤1.(  )
答案:(1)× (2)× (3)√ (4)√
2.在掷骰子的游戏中,向上的数字是5或6的概率是(  )
A.         B.
C. D.1
解析:选B 事件“向上的数字是5”与事件“向上的数字是6”为互斥事件,且二者发生的概率都是,所以“向上的数字是5或6”的概率是+=.
3.事件A与B是对立事件,且P(A)=0.2,则P(B)=________.
解析:因为A与B是对立事件,所以P(A)+P(B)=1,即P(B)=1-P(A)=0.8.
答案:0.8
4.事件A与B是互斥事件,P(A)=0.2,P(B)=0.5,则P(A∪B)=________.
解析:因为A与B互斥,故P(A∪B)=P(A)+P(B)=0.2+0.5=0.7.
答案:0.7
互斥事件、对立事件的概率
[例1] (链接教科书第241页例11)某射击运动员在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.1,0.2,0.3,0.3,0.1.计算这个运动员在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率.
[解] 设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A,B,C,D,E,则
(1)P(A∪B)=P(A)+P(B)=0.1+0.2=0.3.
所以射中10环或9环的概率为0.3.
(2)因为射中7环以下的概率为0.1,所以由对立事件的概率公式得,至少射中7环的概率为1-0.1=0.9.
[母题探究]
(变设问)在本例条件下,求射中环数小于8环的概率.
解:事件“射中环数小于8环”包含事件D“射中7环”与事件E“射中7环以下”两个事件,则P(射中环数小于8环)=P(D∪E)=P(D)+P(E)=0.3+0.1=0.4.
含“至多”“至少”等词语的概率的计算
(1)互斥事件的概率加法公式P(A∪B)=P(A)+P(B);
(2)当求解的问题中有“至多”“至少”“最少”等关键词语时,常常考虑其反面,通过求其反面,然后转化为所求问题.    
[跟踪训练]
1.某运动员射击一次,若事件A(中靶)的概率为0.95,则的概率=________;若事件B(中靶环数大于5)的概率为0.7,那么事件C(中靶环数小于6)的概率=________;事件D(中靶环数大于0且小于6)的概率=________.
解析:P()=1-P(A)=1-0.95=0.05.
依据题意,事件C与事件B是对立事件,故P(C)=1-P(B)=1-0.7=0.3.
依据题意,事件C是事件D与事件的和事件,且事件D与事件互斥,故P(C)=P(D)+P(),
故P(D)=P(C)-P()=0.3-0.05=0.25.
答案:0.05 0.3 0.25
2.黄种人群中各种血型的人所占的比例见下表:
血型 A B AB O
该血型的人所占的比例/% 28 29 8 35
已知同种血型的人可以互相输血,O型血可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若他因病需要输血,问:
(1)任找一个人,其血可以输给小明的概率是多少?
(2)任找一个人,其血不能输给小明的概率是多少?
解:对任何一个人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′,D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.
(1)因为B,O型血可以输给B型血的人,所以“任找一个人,其血可以输给小明”为事件B′+D′,根据互斥事件的概率加法公式,得P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.
(2)由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小明”为事件A′+C′,根据互斥事件的概率加法公式,得P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36.
互斥事件与对立事件概率的综合问题
[例2] (链接教科书第241页例12)一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球,从中随机取出1球,求:
(1)取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率.
[解] 记事件A1={任取1球为红球};A2={任取1球为黑球};A3={任取1球为白球};A4={任取1球为绿球},则
P(A1)=,P(A2)=,
P(A3)=,P(A4)=.
根据题意,事件A1,A2,A3,A4彼此互斥.
法一:由互斥事件概率公式,得
(1)取出1球为红球或黑球的概率为
P(A1+A2)=P(A1)+P(A2)=+=.
(2)取出1球为红球或黑球或白球的概率为
P(A1+A2+A3)=P(A1)+P(A2)+P(A3)
=++=.
法二:(1)取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4,所以取出1球为红球或黑球的概率为
P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)
=1--==.
(2)A1+A2+A3的对立事件为A4,
所以P(A1+A2+A3)=1-P(A4)=1-=.
求复杂互斥事件概率的2种方法
直接法 将所求事件的概率分解为一些彼此互斥的事件的概率的和
间接法 先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”“至少”型问题时,多考虑间接法
    
[跟踪训练]
1.某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示.现从中随机抽取一名队员,求:
(1)该队员只属于一支球队的概率;
(2)该队员最多属于两支球队的概率.
解:分别令“抽取一名队员只属于篮球队、羽毛球队、乒乓球队”为事件A,B,C.由题图知3支球队共有球员20名.
则P(A)=,P(B)=,P(C)=.
(1)令“抽取一名队员,该队员只属于一支球队”为事件D.
则D=A+B+C,
∵事件A,B,C两两互斥,
∴P(D)=P(A+B+C)=P(A)+P(B)+P(C)=++=.
(2)令“抽取一名队员,该队员最多属于两支球队”为事件E,
则为“抽取一名队员,该队员属于3支球队”,
∴P(E)=1-P()=1-=.
2.袋中有12个小球,分别为红球、黑球、黄球、绿球.从中任取一球,得到红球的概率为,得到黑球或黄球的概率为,得到黄球或绿球的概率也为,试求得到黑球、黄球、绿球的概率分别为多少.
解:记“得到红球”为事件A,“得到黑球”为事件B,“得到黄球”为事件C,“得到绿球”为事件D,显然事件A,B,C,D彼此互斥,则由题意可知,P(A)= ①,P(B+C)=P(B)+P(C)= ②,P(C+D)=P(C)+P(D)=  ③.
由事件A和事件B+C+D是对立事件可得
P(A)=1-P(B+C+D)=1-[P(B)+P(C)+P(D)],
即P(B)+P(C)+P(D)=1-P(A)=1-=  ④.
联立②③④可得P(B)=,P(C)=,P(D)=.
即得到黑球、黄球、绿球的概率分别是,,.
1.从集合{a,b,c,d,e}的所有子集中任取一个,若这个子集不是集合{a,b,c}的子集的概率是,则该子集恰是集合{a,b,c}的子集的概率是(  )
A.         B.
C. D.
解析:选C 该子集恰是{a,b,c}的子集的概率为P=1-=.
2.若A,B是互斥事件,P(A)=0.2,P(A∪B)=0.5,则P(B)等于(  )
A.0.3          B.0.7
C.0.1 D.1
解析:选A ∵A,B是互斥事件,∴P(A∪B)=P(A)+P(B)=0.5,∵P(A)=0.2,∴P(B)=0.5-0.2=0.3.故选A.
3.一个电路板上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,则至少有一根熔断的概率是________.
解析:设A=“甲熔丝熔断”,B=“乙熔丝熔断”,则“甲、乙两根熔丝至少有一根熔断”为事件A∪B.
P(A∪B)=P(A)+P(B)-P(A∩B)
=0.85+0.74-0.63
=0.96.
答案:0.96
4.某医院要派医生下乡义诊,派出医生的人数及其概率如下表所示:
人数 0 1 2 3 4 大于等于5
概率 0.1 0.16 0.3 0.2 0.2 0.04
(1)求派出医生至多2人的概率;
(2)求派出医生至少2人的概率.
解:设“不派出医生”为事件A,“派出1名医生”为事件B,“派出2名医生”为事件C,“派出3名医生”为事件D,“派出4名医生”为事件E,“派出5名及5名以上医生”为事
件F,事件A,B,C,D,E,F彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.2,P(E)=0.2,P(F)=0.04.
(1)“派出医生至多2人”的概率为P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
(2)法一:“派出医生至少2人”的概率为P(C+D+E+F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74.
法二:“派出医生至少2人”的概率为1-P(A+B)=1-0.1-0.16=0.74.
PAGE
7概率的基本性质
[A级 基础巩固]
1.已知随机事件A,B,C中,A与B互斥,B与C对立,且P(A)=0.3,P(C)=0.6,则P(A+B)=(  )
A.0.3           B.0.6
C.0.7 D.0.8
解析:选C 因为A与B互斥,B与C对立,所以P(B)=1-P(C)=0.4,P(A+B)=P(A)+P(B)=0.7.
2.(多选)在一个试验模型中,设A表示一个随机事件,表示A的对立事件.以下结论正确的是(  )
A.P(A)=P() B.P(A+)=1
C.若P(A)=1,则P()=0 D.P(A)=0
解析:选BCD 由对立事件的性质P(A)+P()=1,P(A)=P()不一定正确,故A错误;由对立事件的概念得A+=Ω,即P(A+)=P(Ω)=1,B正确;由对立事件的性质P(A)+P()=1知,P(A)=1-P(),故若P(A)=1,则P()=0,C正确;由对立事件的概念得A= ,即P(A)=P( )=0,D正确.故选B、C、D.
3.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的是二等品或三等品”的概率为(  )
A.0.7 B.0.65
C.0.35 D.0.3
解析:选D 从一箱产品中随机抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},P(A)=0.65,P(B)=0.2,P(C)=0.1.显然事件A,B,C两两互斥,则事件“抽到的是二等品或三等品”的概率为P(B∪C)=P(B)+P(C)=0.2+0.1=0.3.
4.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是(  )
A. B.
C. D.
解析:选D 由题意可得
即解得5.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则是下列哪个事件的概率(  )
A.颜色全同 B.颜色不全同
C.颜色全不同 D.无红球
解析:选B 试验的样本空间Ω={黄黄黄,红红红,白白白,红黄黄,黄红黄,黄黄红,白黄黄,黄白黄,黄黄白,黄红红,红黄红,红红黄,白红红,红白红,红红白,黄白白,白黄白,白白黄,红白白,白红白,白白红,黄红白,黄白红,红黄白,红白黄,白红黄,白黄红},其中包含27个样本点,事件“颜色全相同”包含3个样本点,则其概率为==1-,所以是事件“颜色不全同”的概率.
6.口袋中有若干个大小形状完全相同的红球、黄球与蓝球,随机摸出一球,是红球的概率为0.45,是红球或黄球的概率为0.64,则摸出是红球或蓝球的概率是________.
解析:由题意,得摸出是黄球的概率为0.64-0.45=0.19,
∴摸出是红球或蓝球的概率为1-0.19=0.81.
答案:0.81
7.从4名男生和2名女生中任选3人去参加演讲比赛,所选3人中至少有1名女生的概率为,那么所选3人都是男生的概率为________.
解析:设事件A={3人中至少有1名女生},事件B={3人都是男生},则A,B为对立事件,所以P(B)=1-P(A)=.
答案:
8.甲、乙两人下围棋,已知甲获胜的概率为0.45,两人平局的概率为0.1,则甲不输的概率为________,乙胜的概率为________.
解析:记事件A={甲获胜},事件B={甲、乙平局},事件C={甲不输},则C=A+B,而事件A,B是互斥事件,故P(C)=P(A+B)=P(A)+P(B)=0.55.设事件D={乙获胜},则D=,∴P(D)=P()=1-P(C)=0.45.
答案:0.55 0.45
9.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前四声内被接的概率是多少?
解:记“响第一声时被接”为事件A,“响第二声时被接”为事件B,“响第三声时被接”为事件C,“响第四声时被接”为事件D.“响前四声内被接”为事件E,则易知A,B,C,D两两互斥,且E=A∪B∪C∪D,所以由互斥事件的概率加法公式得,
P(E)=P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.1+0.3+0.4+0.1=0.9.
即电话在响前四声内被接的概率是0.9.
10.甲、乙两人参加普法知识竞赛,共有5个不同的题目.其中,选择题3个,判断题2个,甲、乙两人各抽一题.
(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
解:把3个选择题记为x1,x2,x3,2个判断题记为p1,p2.用y1,y2分别表示甲、乙抽到的题目,则数组(y1,y2)可表示样本点.样本空间的样本点个数为20.
设A=“甲抽到选择题,乙抽到判断题”,则A={(x1,p1),(x1,p2),(x2,p1),(x2,p2),(x3,p1),(x3,p2)},共6种;
B=“甲抽到判断题,乙抽到选择题”,则B={(p1,x1),(p1,x2),(p1,x3),(p2,x1),(p2,x2),(p2,x3)},共6种;
C=“甲、乙都抽到选择题”,则C={(x1,x2),(x1,x3),(x2,x1),(x2,x3),(x3,x1),(x3,x2)},共6种;
D=“甲、乙都抽到判断题”,则D={(p1,p2),(p2,p1)},共2种.
易知A,B,C,D两两互斥.
(1)“甲抽到选择题,乙抽到判断题”的概率为P(A)==,
“甲抽到判断题,乙抽到选择题”的概率为P(B)==,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为P(A)+P(B)=+=.
(2)“甲、乙两人都抽到判断题”的概率为P(D)=,故“甲、乙两人至少有一人抽到选择题”的概率为1-=.
[B级 综合运用]
11.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=(  )
A. B.
C. D.
解析:选C ∵抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,
∴P(A)==,P(B)==,P(AB)==,
P(A∪B)=P(A)+P(B)-P(AB)=+-=.故选C.
12.在明代珠算发明之前,我们的先祖从春秋开始多是用算筹为工具来记数、列式和计算.算筹实际上是一根根相同长度的小木棍,如图,是利用算筹表示数1~9的一种方法,例如:47可以表示为“”,已知用算筹表示一个不含“0”且没有重复数字的三位数共有504种等可能的结果,则这个数至少要用8根小木棍的概率为(  )
A. B.
C. D.
解析:选D 至少要用8根小木棍的对立事件为用5根,6根,7根这三种情况.用5根小木棍为1、2、6这一种情况,组成三位数包括6个样本点,用6根有1、2、3,1、2、7,1、6、3,1、6、7这四种情况,同理,每种情况包括6个样本点,共24个样本点.用7根有1、2、4,1、2、8,1、6、4,1、6、8,1、3、7,2、6、7,2、6、3这七种情况,同理,共42个样本点.
故至少要用8根小木棍的概率为1-=.故选D.
13.某医院一天派出医生下乡医疗,派出医生人数及其概率如下表:
医生人数 0 1 2 3 4 ≥5
概率 0.1 0.16 x y 0.2 z
若派出医生不超过2人的概率为0.56,则x=________,若派出医生最多4人的概率为0.96,最少3人的概率为0.44,则y=________.
解析:(1)由派出医生不超过2人的概率为0.56,得0.1+0.16+x=0.56,∴x=0.3.
(2)由派出医生最多4人的概率为0.96,得0.96+z=1,∴z=0.04.
由派出医生最少3人的概率为0.44,得y+0.2+z=0.44,∴y=0.44-0.2-0.04=0.2.
答案:0.3 0.2
14.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1 000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)抽取1张奖券中奖概率;
(3)抽取1张奖券不中特等奖或一等奖的概率.
解:(1)∵每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个,
∴P(A)=,P(B)==,
P(C)==.
(2)设“抽取1张奖券中奖”为事件D,则
P(D)=P(A)+P(B)+P(C)
=++=.
(3)设“抽取1张奖券不中特等奖或一等奖”为事件E,则
P(E)=1-P(A)-P(B)=1--=.
[C级 拓展探究]
15.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量 1至4件 5至8件 9至12件 13至16件 17件及以上
顾客数(人) x 30 25 y 10
结算时间(分钟/人) 1 1.5 2 2.5 3
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
解:(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为=1.9(分钟).
(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率,得
P(A1)==,P(A2)==.
P(A)=1-P(A1)-P(A2)=1--=.
故一位顾客一次购物的结算时间不超过2分钟的概率为.
PAGE
6(共29张PPT)