(共26张PPT)总体离散程度的估计
新课程标准解读 核心素养
1.结合实例,能用样本估计总体的离散程度参数(标准差、方差、极差) 数据分析
2.理解离散程度参数的统计含义 数学运算
有甲、乙两种钢筋,现从中各抽取一个样本(如表所示)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125 kg/mm2.
甲 110 120 130 125 120 125 135 125 135 125
乙 115 100 125 130 115 125 125 145 125 145
[问题] 哪种钢筋的质量较好?
知识点 总体离散程度的估计
1.平均距离
假设一组数据是x1,x2,…,xn,用表示这组数据的平均数.我们用每个数据与平均数的差的绝对值作为“距离”,即|xi-|(i=1,2,…,n)作为xi到的“距离”.可以得到这组数据x1,x2,…,xn到的“平均距离”为xi-|.
2.方差、标准差
绝对值改用平方来代替,即(xi-)2=-2,我们称为这组数据的方差.取它的算术平方根,即 ,我们称为这组数据的标准差.
3.总体方差、总体标准差
如果总体中所有个体的变量值分别为Y1,Y2,…,YN,总体平均数为,则称S2=(Yi-)2为总体方差,S=为总体标准差.
如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Yk,其中Yi出现的频率为fi(i=1,2,…,k),则总体方差为S2=i(Yi-)2.
4.样本方差、样本标准差
如果一个样本中个体的变量值分别为y1,y2,…,yn,样本平均数为,则称s2=(yi-)2为样本方差,s=为样本标准差.
标准差、方差的意义
(1)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小,标准差的大小不会超过极差;
(2)标准差、方差的取值范围[0,+∞).标准差、方差为0时,样本各数据相等,说明数据没有波动幅度,数据没有离散性;
(3)因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分解程度上是一样的,但在解决实际问题时,一般多采用标准差.
数据的标准差大小与数据的离散程度有什么关系?
提示:标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.
1.判断正误.(正确的画“√”,错误的画“×”)
(1)数据的极差越小,样本数据分布越集中、稳定.( )
(2)数据的方差越大,样本数据分布越集中、稳定.( )
(3)数据的标准差越小,数据分布越集中、波动幅度越小.( )
答案:(1)√ (2)× (3)√
2.现有10个数,其平均数为3,且这10个数的平方和是100,那么这组数据的标准差是( )
A.1 B.2
C.3 D.4
解析:选A 由s2=-2,得s2=×100-32=1,∴s=1.
3.国家射击队要从甲、乙、丙、丁四名队员中选出一名选手去参加射击比赛,四人的平均成绩和方差如下表:
甲 乙 丙 丁
平均成绩 8.5 8.8 8.8 8
方差s2 3.5 3.5 2.1 8.7
则应派________参赛最为合适.
解析:由表可知,丙的平均成绩较高,且发挥比较稳定,应派丙去参赛最合适.
答案:丙
标准差、方差的计算与应用
[例1] (链接教科书第214页练习4题)从甲、乙两种玉米苗中各抽10株,分别测它们的株高(单位:cm)如下:
甲:25 41 40 37 22 14 19 39 21 42
乙:27 16 44 27 44 16 40 40 16 40
问:(1)哪种玉米苗长得高?
(2)哪种玉米苗长得齐?
[解] (1)甲=(25+41+40+37+22+14+19+39+21+42)=×300=30(cm),
乙=(27+16+44+27+44+16+40+40+16+40)=×310=31(cm).
所以甲<乙,即乙种玉米苗长得高.
(2)s=[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=(25+121+100+49+64+256+121+81+81+144)=×1 042=104.2(cm2),
s=[2×(27-31)2+3×(16-31)2+2×(44-31)2+3×(40-31)2]=×1 288=128.8(cm2).
所以s用样本的标准差、方差估计总体的方法
用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.在实际应用中,常常把平均数与标准差结合起来进行决策.在平均数相等的情况下,比较方差或标准差以确定稳定性.
[跟踪训练]
甲、乙两种冬小麦连续5年的平均单位面积产量(单位:t/km2)如下:
品种 第1年 第2年 第3年 第4年 第5年
甲 9.8 9.9 10.1 10 10.2
乙 9.4 10.3 10.8 9.7 9.8
其中产量比较稳定的冬小麦品种是________.
解析:甲=×(9.8+9.9+10.1+10+10.2)=10(t/km2),
乙=×(9.4+10.3+10.8+9.7+9.8)=10(t/km2),
即甲、乙两种冬小麦的平均产量都为 10 t/km2.
s=×(0.04+0.01+0.01+0+0.04)=0.02,
s=×(0.36+0.09+0.64+0.09+0.04)=0.244,
即s答案:甲
分层随机抽样的方差
[例2] (链接教科书第212页例6)甲、乙两支田径队的体检结果为:甲队体重的平均数为60 kg,方差为200,乙队体重的平均数为70 kg,方差为300,又已知甲、乙两队的队员人数之比为1∶4,那么甲、乙两队全部队员的平均体重和方差分别是多少?
[解] 由题意可知甲=60,甲队队员在所有队员中所占权重为w甲==,
乙=70,乙队队员在所有队员中所占权重为w乙==,
则甲、乙两队全部队员的平均体重为
=w甲甲+w乙乙=×60+×70=68(kg),
甲、乙两队全部队员的体重的方差为
s2=w甲[s+(甲-)2]+w乙[s乙+(乙-)2]
=[200+(60-68)2]+[300+(70-68)2]=296.
计算分层随机抽样的方差s2的步骤
(1)确定1,2,s,s;
(2)确定;
(3)应用公式s2=[s+(1-)2]+[s+(2-)2],计算s2.
[跟踪训练]
在了解全校学生每年平均阅读了多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5,方差为9;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6,方差为16.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本平均数与方差.(精确到0.1.)
解:把甲同学抽取的样本的平均数记为x,方差记为s;把乙同学抽取的样本的平均数记为y,方差记为s;把合在一起后的样本的平均数记为a,方差记为s2.
则=≈5.4,
s2=
=
≈12.4.
即样本的平均数为5.4,方差为12.4.
1.在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A,B两样本的下列数字特征对应相同的是( )
A.平均数 B.标准差
C.众数 D.中位数
解析:选B 由B样本数据恰好是A样本数据每个都减5后所得数据,可得平均数、众数、中位数分别是原来结果减去5,即与A样本不相同,标准差不变,故选B.
2.若样本数据2x1-1,2x2-1,…,2x10-1的标准差为16,则数据x1,x2,…,x10的标准差为________.
解析:设数据x1,x2,…,x10的标准差为s,∵样本数据2x1-1,2x2-1,…,2x10-1的标准差为16,∴4s2=162,解得s=8.
答案:8
3.为调查高一年级学生期中考试数学成绩的情况,从(1)班抽取了12名学生的成绩,他们的平均分为91分,方差为3,从(2)班抽取了8名学生的成绩,他们的平均分为89分,方差为5,则合在一起后的样本均值为________,样本方差为________.
解析:样本均值==90.2,
样本方差s2=
=4.76.
答案:90.2 4.76
4.甲、乙两台机床同时加工直径为100 cm的零件,为检验质量,从中抽取6件,测量数据分别为:
甲:99 100 98 100 100 103
乙:99 100 102 99 100 100
(1)分别计算两组数据的平均数及方差;
(2)根据计算说明哪台机床加工零件的质量更稳定.
解:(1)甲=[99+100+98+100+100+103]=100,
乙=[99+100+102+99+100+100]=100,
s=[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=,
s=[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.
(2)由(1)知甲=乙,比较它们的方差,因为s>s,
故乙机床加工零件的质量更稳定.
PAGE
6总体离散程度的估计
[A级 基础巩固]
1.(多选)甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表:
班级 参加人数 中位数 方差 平均数
甲 55 149 191 135
乙 55 151 110 135
下列结论中,正确的是( )
A.甲、乙两班学生成绩的平均水平相同
B.乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)
C.甲班的成绩波动情况比乙班的成绩波动大
D.甲班成绩的众数小于乙班成绩的众数
解析:选ABC 甲、乙两班成绩的平均数都是135,故两班成绩的平均水平相同,∴A正确;s=191>110=s,∴甲班成绩不如乙班稳定,即甲班成绩波动较大,∴C正确;甲、乙两班人数相同,但甲班成绩的中位数为149,乙班成绩的中位数为151,从而易知乙班每分钟输入汉字数≥150个的人数要多于甲班,∴B正确;由题表看不出两班学生成绩的众数,D错误.
2.若某组数据的方差s2=[(x1-3)2+(x2-3)2+(x3-3)2+…+(x6-3)2],则x1+x2+x3+…+x6=( )
A.3 B.6
C.18 D.36
解析:选C 由方差公式可知,6个数据的平均数是3,
∴x1+x2+x3+…+x6=6×3=18.
3.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为( )
A. B.
C. D.2
解析:选D 由题可知样本的平均数为1,
所以=1,解得a=-1,
所以样本的方差为
s2=[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.故选D.
4.已知样本数为9的四组数据,它们的平均数都是5,条形统计图如图所示,则标准差最大的是( )
解析:选D 选项A中,样本数据都为5,数据没有波动幅度;选项B中,样本数据为4,4,4,5,5,5,6,6,6;选项C中,样本数据为3,3,4,4,5,6,6,7,7;选项D中,样本数据为2,2,2,2,5,8,8,8,8,故标准差最大的是D.也可由样本数据的离散程度的大小反映标准差,从题图中可以看出D中的数据波动最大.
5.在高一期中考试中,甲、乙两个班的数学成绩统计如下表:
班级 人数 平均分数 方差
甲 20 甲 2
乙 30 乙 3
其中甲=乙,则两个班数学成绩的方差为( )
A.3 B.2
C.2.6 D.2.5
解析:选C 由题意可知两个班的数学成绩平均数为=甲=乙,则两个班数学成绩的方差为
s2=[2+(甲-)2]+[3+(乙-)2]
=×2+×3=2.6.
6.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.
解析:这组数据的平均数=(4.7+4.8+5.1+5.4+5.5)=5.1,故s2=[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.
答案:0.1
7.已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,则这组数据的平均数为________,方差为________.
解析:∵-1,0,4,x,7,14的中位数为5,
∴=5,∴x=6.
∴这组数据的平均数是=5,
这组数据的方差是×(36+25+1+1+4+81)=.
答案:5
8.已知某省二、三、四线城市数量之比为1∶3∶6,2019年8月份调查得知该省二、三、四线所有城市房产均价为1.2万元/平方米,方差为20,二、三、四线城市的房产均价分别为2.4万元/平方米,1.8万元/平方米,0.7万元/平方米,三、四线城市房价的方差分别为10,8,则二线城市的房价的方差为________.
解析:设二线城市的房价的方差为s2,由题意可知
20=[s2+(2.4-1.2)2]+[10+(1.8-1.2)2]+[8+(0.7-1.2)2],解得s2=117.98,即二线城市的房价的方差为117.98.
答案:117.98
9.对甲、乙两名同学的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:
甲 60 80 70 90 70
乙 80 60 70 80 75
(1)甲、乙的平均成绩谁最好?
(2)谁的各门功课发展较平衡?
解:(1)甲=×(60+80+70+90+70)=74,
乙=×(80+60+70+80+75)=73,
甲>乙,故甲的平均成绩较好.
(2)s=×[(60-74)2+(80-74)2+(70-74)2+(90-74)2+(70-74)2]=104,
s=×[(80-73)2+(60-73)2+(70-73)2+(80-73)2+(75-73)2]=56,
由s>s,知乙的各门功课发展较平衡.
10.某教育集团为了办好让人民满意的教育,每年年底都随机邀请8名学生家长代表对集团内甲、乙两所学校进行人民满意度的民主测评(满意度最高分120分,最低分0分,分数越高说明人民满意度越高,分数越低说明人民满意度越低).去年测评的数据如下:
甲校:96,112,97,108,100,103,86,98;
乙校:108,101,94,105,96,93,97,106.
(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数;
(2)分别计算甲、乙两所学校去年人民满意度测评数据的方差;
(3)根据以上数据你认为甲、乙哪所学校人民满意度比较好?
解:(1)甲学校人民满意度测评数据的平均数为
甲=×(96+112+97+108+100+103+86+98)=100,
中位数为=99,
乙学校人民满意度测评数据的平均数为
乙=×(108+101+94+105+96+93+97+106)=100,
中位数为=99.
(2)甲学校人民满意度测评数据的方差:
s=×[(96-100)2+(112-100)2+…+(98-100)2]=55.25,
乙学校人民满意度测评数据的方差:
s=×[(108-100)2+(101-100)2+…+(106-100)2]=29.5.
(3)由(1)(2)可知甲、乙两学校人民满意度测评数据的平均数相同,中位数相同,而乙学校人民满意度测评数据的方差小于甲学校的方差,故乙学校人民满意度比较好.
[B级 综合运用]
11.(多选)某综艺节目为比较甲、乙两名选手的各项能力(每项能力的指标值满分均为5分,分值高者为优),绘制如图所示的六维能力雷达图,图中点A表示甲的创造能力指标值为4,点B表示乙的空间能力指标值为3,则下列叙述正确的是( )
A.乙的记忆能力优于甲
B.乙的观察能力优于创造能力
C.甲的六大能力整体水平优于乙
D.甲的六大能力比乙较均衡
解析:选BCD 由六维能力雷达图,知乙的记忆能力指标值是4,甲的记忆能力指标值是5,故甲的记忆能力优于乙的记忆能力,故A错误;乙的创造能力指标值是3,观察能力指标值是4,故乙的观察能力优于创造能力,故B正确;甲的六大能力之和为25,乙的六大能力之和为24,所以甲的六大能力整体水平优于乙,故C正确;甲的六大能力指标值的方差为s=,乙的六大能力指标值的方差为s=,所以s12.若某同学连续3次考试的名次(3次考试均没有出现并列名次的情况)不低于第3名,则称该同学为班级的尖子生.根据甲、乙、丙、丁四位同学过去连续3次考试名次的数据,推断一定是尖子生的是( )
A.甲同学:平均数为2,众数为1
B.乙同学:平均数为2,方差小于1
C.丙同学:中位数为2,众数为2
D.丁同学:众数为2,方差大于1
解析:选B 甲同学:若平均数为2,众数为1,则有一次名次应为4,故排除A;乙同学:平均数为2,设乙同学3次考试的名次分别为x1,x2,x3,则方差s2=[(x1-2)2+(x2-2)2+(x3-2)2]<1,则(x1-2)2+(x2-2)2+(x3-2)2<3,所以x1,x2,x3均不大于3,符合题意;丙同学:中位数为2,众数为2,有可能是2,2,4,不符合题意;丁同学:众数为2,方差大于1,有可能是2,2,6,不符合题意.故选B.
13.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的分数登记错了,甲实得80分,却记了50分,乙实得70分,却记了100分,更正后平均分和方差分别是________,________.
解析:因甲少记了30分,乙多记了30分,故平均分不变.设更正后的方差为s2,则由题意可得s2=[(x1-70)2+(x2-70)2+…+(80-70)2+(70-70)2+…+(x48-70)2],而更正前有75=[(x1-70)2+(x2-70)2+…+(50-70)2+(100-70)2+…+(x48-70)2],化简整理得s2=50.
答案:70 50
14.某学校统计教师职称及年龄,中级职称教师的人数为50,其平均年龄为38岁,方差是2,高级职称的教师中有3人58岁,5人40岁,2人38岁,求该校中级职称和高级职称教师年龄的平均数和方差.
解:由已知条件可知高级职称教师的平均年龄为
高==45(岁),
年龄的方差为s=[3×(58-45)2+5×(40-45)2+2×(38-45)2]=73,
所以该校中级职称和高级职称教师的平均年龄为
=×38+×45≈39.2(岁),
该校中级职称和高级职称教师的年龄的方差是
s2=[2+(38-39.2)2]+[73+(45-39.2)2]
=20.64.
[C级 拓展探究]
15.从某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125]
频数 6 26 38 22 8
(1)根据上表补全所示的频率分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
解:(1)补全后的频率分布直方图如图所示.
(2)质量指标值的样本平均数为80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.
质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+02×0.38+102×0.22+202×0.08=104.
所以这种产品质量指标值的平均数约为100,方差约为104.
(3)质量指标值不低于95的产品所占比例约为0.38+0.22+0.08=0.68.
由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.
PAGE
7